| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxnn0 |
⊢ ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) ) |
| 2 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 3 |
2
|
rexrd |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ* ) |
| 4 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
| 5 |
|
elxrge0 |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) |
| 6 |
3 4 5
|
sylanbrc |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 7 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 8 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 9 |
|
0lepnf |
⊢ 0 ≤ +∞ |
| 10 |
|
ubicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) ) |
| 11 |
7 8 9 10
|
mp3an |
⊢ +∞ ∈ ( 0 [,] +∞ ) |
| 12 |
|
eleq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ +∞ ∈ ( 0 [,] +∞ ) ) ) |
| 13 |
11 12
|
mpbiri |
⊢ ( 𝐴 = +∞ → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 14 |
6 13
|
jaoi |
⊢ ( ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 15 |
1 14
|
sylbi |
⊢ ( 𝐴 ∈ ℕ0* → 𝐴 ∈ ( 0 [,] +∞ ) ) |