| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxnn0 |
|- ( A e. NN0* <-> ( A e. NN0 \/ A = +oo ) ) |
| 2 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 3 |
2
|
rexrd |
|- ( A e. NN0 -> A e. RR* ) |
| 4 |
|
nn0ge0 |
|- ( A e. NN0 -> 0 <_ A ) |
| 5 |
|
elxrge0 |
|- ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) ) |
| 6 |
3 4 5
|
sylanbrc |
|- ( A e. NN0 -> A e. ( 0 [,] +oo ) ) |
| 7 |
|
0xr |
|- 0 e. RR* |
| 8 |
|
pnfxr |
|- +oo e. RR* |
| 9 |
|
0lepnf |
|- 0 <_ +oo |
| 10 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) ) |
| 11 |
7 8 9 10
|
mp3an |
|- +oo e. ( 0 [,] +oo ) |
| 12 |
|
eleq1 |
|- ( A = +oo -> ( A e. ( 0 [,] +oo ) <-> +oo e. ( 0 [,] +oo ) ) ) |
| 13 |
11 12
|
mpbiri |
|- ( A = +oo -> A e. ( 0 [,] +oo ) ) |
| 14 |
6 13
|
jaoi |
|- ( ( A e. NN0 \/ A = +oo ) -> A e. ( 0 [,] +oo ) ) |
| 15 |
1 14
|
sylbi |
|- ( A e. NN0* -> A e. ( 0 [,] +oo ) ) |