Metamath Proof Explorer


Theorem xpcomen

Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of Mendelson p. 254. (Contributed by NM, 5-Jan-2004) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses xpcomen.1 𝐴 ∈ V
xpcomen.2 𝐵 ∈ V
Assertion xpcomen ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 )

Proof

Step Hyp Ref Expression
1 xpcomen.1 𝐴 ∈ V
2 xpcomen.2 𝐵 ∈ V
3 1 2 xpex ( 𝐴 × 𝐵 ) ∈ V
4 2 1 xpex ( 𝐵 × 𝐴 ) ∈ V
5 eqid ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ { 𝑥 } ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ { 𝑥 } )
6 5 xpcomf1o ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ { 𝑥 } ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 )
7 f1oen2g ( ( ( 𝐴 × 𝐵 ) ∈ V ∧ ( 𝐵 × 𝐴 ) ∈ V ∧ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ { 𝑥 } ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) )
8 3 4 6 7 mp3an ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 )