Metamath Proof Explorer


Theorem xpcomen

Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of Mendelson p. 254. (Contributed by NM, 5-Jan-2004) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses xpcomen.1 AV
xpcomen.2 BV
Assertion xpcomen A×BB×A

Proof

Step Hyp Ref Expression
1 xpcomen.1 AV
2 xpcomen.2 BV
3 1 2 xpex A×BV
4 2 1 xpex B×AV
5 eqid xA×Bx-1=xA×Bx-1
6 5 xpcomf1o xA×Bx-1:A×B1-1 ontoB×A
7 f1oen2g A×BVB×AVxA×Bx-1:A×B1-1 ontoB×AA×BB×A
8 3 4 6 7 mp3an A×BB×A