Metamath Proof Explorer
Description: Value of the intersection of Cartesian product with the intersection of
a nonempty class. (Contributed by RP, 12-Aug-2020)
|
|
Ref |
Expression |
|
Hypothesis |
xpinintabd.x |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
|
Assertion |
xpinintabd |
⊢ ( 𝜑 → ( ( 𝐴 × 𝐵 ) ∩ ∩ { 𝑥 ∣ 𝜓 } ) = ∩ { 𝑤 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∣ ∃ 𝑥 ( 𝑤 = ( ( 𝐴 × 𝐵 ) ∩ 𝑥 ) ∧ 𝜓 ) } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xpinintabd.x |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
2 |
1
|
inintabd |
⊢ ( 𝜑 → ( ( 𝐴 × 𝐵 ) ∩ ∩ { 𝑥 ∣ 𝜓 } ) = ∩ { 𝑤 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∣ ∃ 𝑥 ( 𝑤 = ( ( 𝐴 × 𝐵 ) ∩ 𝑥 ) ∧ 𝜓 ) } ) |