Metamath Proof Explorer


Theorem xpinintabd

Description: Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020)

Ref Expression
Hypothesis xpinintabd.x ( 𝜑 → ∃ 𝑥 𝜓 )
Assertion xpinintabd ( 𝜑 → ( ( 𝐴 × 𝐵 ) ∩ { 𝑥𝜓 } ) = { 𝑤 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∣ ∃ 𝑥 ( 𝑤 = ( ( 𝐴 × 𝐵 ) ∩ 𝑥 ) ∧ 𝜓 ) } )

Proof

Step Hyp Ref Expression
1 xpinintabd.x ( 𝜑 → ∃ 𝑥 𝜓 )
2 1 inintabd ( 𝜑 → ( ( 𝐴 × 𝐵 ) ∩ { 𝑥𝜓 } ) = { 𝑤 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∣ ∃ 𝑥 ( 𝑤 = ( ( 𝐴 × 𝐵 ) ∩ 𝑥 ) ∧ 𝜓 ) } )