Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relintabex | ⊢ ( Rel ∩ { 𝑥 ∣ 𝜑 } → ∃ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnex | ⊢ ( ¬ ∩ { 𝑥 ∣ 𝜑 } ∈ V ↔ ∩ { 𝑥 ∣ 𝜑 } = V ) | |
| 2 | nrelv | ⊢ ¬ Rel V | |
| 3 | releq | ⊢ ( ∩ { 𝑥 ∣ 𝜑 } = V → ( Rel ∩ { 𝑥 ∣ 𝜑 } ↔ Rel V ) ) | |
| 4 | 2 3 | mtbiri | ⊢ ( ∩ { 𝑥 ∣ 𝜑 } = V → ¬ Rel ∩ { 𝑥 ∣ 𝜑 } ) |
| 5 | 1 4 | sylbi | ⊢ ( ¬ ∩ { 𝑥 ∣ 𝜑 } ∈ V → ¬ Rel ∩ { 𝑥 ∣ 𝜑 } ) |
| 6 | 5 | con4i | ⊢ ( Rel ∩ { 𝑥 ∣ 𝜑 } → ∩ { 𝑥 ∣ 𝜑 } ∈ V ) |
| 7 | intexab | ⊢ ( ∃ 𝑥 𝜑 ↔ ∩ { 𝑥 ∣ 𝜑 } ∈ V ) | |
| 8 | 6 7 | sylibr | ⊢ ( Rel ∩ { 𝑥 ∣ 𝜑 } → ∃ 𝑥 𝜑 ) |