Metamath Proof Explorer


Theorem relintabex

Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020)

Ref Expression
Assertion relintabex ( Rel { 𝑥𝜑 } → ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 intnex ( ¬ { 𝑥𝜑 } ∈ V ↔ { 𝑥𝜑 } = V )
2 nrelv ¬ Rel V
3 releq ( { 𝑥𝜑 } = V → ( Rel { 𝑥𝜑 } ↔ Rel V ) )
4 2 3 mtbiri ( { 𝑥𝜑 } = V → ¬ Rel { 𝑥𝜑 } )
5 1 4 sylbi ( ¬ { 𝑥𝜑 } ∈ V → ¬ Rel { 𝑥𝜑 } )
6 5 con4i ( Rel { 𝑥𝜑 } → { 𝑥𝜑 } ∈ V )
7 intexab ( ∃ 𝑥 𝜑 { 𝑥𝜑 } ∈ V )
8 6 7 sylibr ( Rel { 𝑥𝜑 } → ∃ 𝑥 𝜑 )