Metamath Proof Explorer


Theorem elcnvcnvintab

Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020)

Ref Expression
Assertion elcnvcnvintab ( 𝐴 { 𝑥𝜑 } ↔ ( 𝐴 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜑𝐴𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 cnvcnv { 𝑥𝜑 } = ( { 𝑥𝜑 } ∩ ( V × V ) )
2 incom ( { 𝑥𝜑 } ∩ ( V × V ) ) = ( ( V × V ) ∩ { 𝑥𝜑 } )
3 1 2 eqtri { 𝑥𝜑 } = ( ( V × V ) ∩ { 𝑥𝜑 } )
4 3 eleq2i ( 𝐴 { 𝑥𝜑 } ↔ 𝐴 ∈ ( ( V × V ) ∩ { 𝑥𝜑 } ) )
5 elinintab ( 𝐴 ∈ ( ( V × V ) ∩ { 𝑥𝜑 } ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜑𝐴𝑥 ) ) )
6 4 5 bitri ( 𝐴 { 𝑥𝜑 } ↔ ( 𝐴 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜑𝐴𝑥 ) ) )