Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elcnvcnvintab | ⊢ ( 𝐴 ∈ ◡ ◡ ∩ { 𝑥 ∣ 𝜑 } ↔ ( 𝐴 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv | ⊢ ◡ ◡ ∩ { 𝑥 ∣ 𝜑 } = ( ∩ { 𝑥 ∣ 𝜑 } ∩ ( V × V ) ) | |
2 | incom | ⊢ ( ∩ { 𝑥 ∣ 𝜑 } ∩ ( V × V ) ) = ( ( V × V ) ∩ ∩ { 𝑥 ∣ 𝜑 } ) | |
3 | 1 2 | eqtri | ⊢ ◡ ◡ ∩ { 𝑥 ∣ 𝜑 } = ( ( V × V ) ∩ ∩ { 𝑥 ∣ 𝜑 } ) |
4 | 3 | eleq2i | ⊢ ( 𝐴 ∈ ◡ ◡ ∩ { 𝑥 ∣ 𝜑 } ↔ 𝐴 ∈ ( ( V × V ) ∩ ∩ { 𝑥 ∣ 𝜑 } ) ) |
5 | elinintab | ⊢ ( 𝐴 ∈ ( ( V × V ) ∩ ∩ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) | |
6 | 4 5 | bitri | ⊢ ( 𝐴 ∈ ◡ ◡ ∩ { 𝑥 ∣ 𝜑 } ↔ ( 𝐴 ∈ ( V × V ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |