Step |
Hyp |
Ref |
Expression |
1 |
|
cnvcnv |
|- `' `' |^| { x | ph } = ( |^| { x | ph } i^i ( _V X. _V ) ) |
2 |
|
incom |
|- ( |^| { x | ph } i^i ( _V X. _V ) ) = ( ( _V X. _V ) i^i |^| { x | ph } ) |
3 |
1 2
|
eqtri |
|- `' `' |^| { x | ph } = ( ( _V X. _V ) i^i |^| { x | ph } ) |
4 |
3
|
eleq2i |
|- ( A e. `' `' |^| { x | ph } <-> A e. ( ( _V X. _V ) i^i |^| { x | ph } ) ) |
5 |
|
elinintab |
|- ( A e. ( ( _V X. _V ) i^i |^| { x | ph } ) <-> ( A e. ( _V X. _V ) /\ A. x ( ph -> A e. x ) ) ) |
6 |
4 5
|
bitri |
|- ( A e. `' `' |^| { x | ph } <-> ( A e. ( _V X. _V ) /\ A. x ( ph -> A e. x ) ) ) |