Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elinintab | |- ( A e. ( B i^i |^| { x | ph } ) <-> ( A e. B /\ A. x ( ph -> A e. x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( A e. ( B i^i |^| { x | ph } ) <-> ( A e. B /\ A e. |^| { x | ph } ) ) |
|
| 2 | elintabg | |- ( A e. B -> ( A e. |^| { x | ph } <-> A. x ( ph -> A e. x ) ) ) |
|
| 3 | 2 | pm5.32i | |- ( ( A e. B /\ A e. |^| { x | ph } ) <-> ( A e. B /\ A. x ( ph -> A e. x ) ) ) |
| 4 | 1 3 | bitri | |- ( A e. ( B i^i |^| { x | ph } ) <-> ( A e. B /\ A. x ( ph -> A e. x ) ) ) |