Metamath Proof Explorer


Theorem elinintab

Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020)

Ref Expression
Assertion elinintab
|- ( A e. ( B i^i |^| { x | ph } ) <-> ( A e. B /\ A. x ( ph -> A e. x ) ) )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( A e. ( B i^i |^| { x | ph } ) <-> ( A e. B /\ A e. |^| { x | ph } ) )
2 elintabg
 |-  ( A e. B -> ( A e. |^| { x | ph } <-> A. x ( ph -> A e. x ) ) )
3 2 pm5.32i
 |-  ( ( A e. B /\ A e. |^| { x | ph } ) <-> ( A e. B /\ A. x ( ph -> A e. x ) ) )
4 1 3 bitri
 |-  ( A e. ( B i^i |^| { x | ph } ) <-> ( A e. B /\ A. x ( ph -> A e. x ) ) )