Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elinintab | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ ∩ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ ∩ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ ∩ { 𝑥 ∣ 𝜑 } ) ) | |
2 | elintabg | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) | |
3 | 2 | pm5.32i | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ ∩ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
4 | 1 3 | bitri | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ ∩ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |