Metamath Proof Explorer


Theorem elinintab

Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020)

Ref Expression
Assertion elinintab ( 𝐴 ∈ ( 𝐵 { 𝑥𝜑 } ) ↔ ( 𝐴𝐵 ∧ ∀ 𝑥 ( 𝜑𝐴𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝐴 ∈ ( 𝐵 { 𝑥𝜑 } ) ↔ ( 𝐴𝐵𝐴 { 𝑥𝜑 } ) )
2 elintabg ( 𝐴𝐵 → ( 𝐴 { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑𝐴𝑥 ) ) )
3 2 pm5.32i ( ( 𝐴𝐵𝐴 { 𝑥𝜑 } ) ↔ ( 𝐴𝐵 ∧ ∀ 𝑥 ( 𝜑𝐴𝑥 ) ) )
4 1 3 bitri ( 𝐴 ∈ ( 𝐵 { 𝑥𝜑 } ) ↔ ( 𝐴𝐵 ∧ ∀ 𝑥 ( 𝜑𝐴𝑥 ) ) )