Step |
Hyp |
Ref |
Expression |
1 |
|
cnvcnv |
|- `' `' |^| { x | ph } = ( |^| { x | ph } i^i ( _V X. _V ) ) |
2 |
|
incom |
|- ( |^| { x | ph } i^i ( _V X. _V ) ) = ( ( _V X. _V ) i^i |^| { x | ph } ) |
3 |
1 2
|
eqtri |
|- `' `' |^| { x | ph } = ( ( _V X. _V ) i^i |^| { x | ph } ) |
4 |
|
dfrel2 |
|- ( Rel |^| { x | ph } <-> `' `' |^| { x | ph } = |^| { x | ph } ) |
5 |
4
|
biimpi |
|- ( Rel |^| { x | ph } -> `' `' |^| { x | ph } = |^| { x | ph } ) |
6 |
|
relintabex |
|- ( Rel |^| { x | ph } -> E. x ph ) |
7 |
6
|
xpinintabd |
|- ( Rel |^| { x | ph } -> ( ( _V X. _V ) i^i |^| { x | ph } ) = |^| { w e. ~P ( _V X. _V ) | E. x ( w = ( ( _V X. _V ) i^i x ) /\ ph ) } ) |
8 |
|
incom |
|- ( ( _V X. _V ) i^i x ) = ( x i^i ( _V X. _V ) ) |
9 |
|
cnvcnv |
|- `' `' x = ( x i^i ( _V X. _V ) ) |
10 |
8 9
|
eqtr4i |
|- ( ( _V X. _V ) i^i x ) = `' `' x |
11 |
10
|
eqeq2i |
|- ( w = ( ( _V X. _V ) i^i x ) <-> w = `' `' x ) |
12 |
11
|
anbi1i |
|- ( ( w = ( ( _V X. _V ) i^i x ) /\ ph ) <-> ( w = `' `' x /\ ph ) ) |
13 |
12
|
exbii |
|- ( E. x ( w = ( ( _V X. _V ) i^i x ) /\ ph ) <-> E. x ( w = `' `' x /\ ph ) ) |
14 |
13
|
rabbii |
|- { w e. ~P ( _V X. _V ) | E. x ( w = ( ( _V X. _V ) i^i x ) /\ ph ) } = { w e. ~P ( _V X. _V ) | E. x ( w = `' `' x /\ ph ) } |
15 |
14
|
inteqi |
|- |^| { w e. ~P ( _V X. _V ) | E. x ( w = ( ( _V X. _V ) i^i x ) /\ ph ) } = |^| { w e. ~P ( _V X. _V ) | E. x ( w = `' `' x /\ ph ) } |
16 |
7 15
|
eqtrdi |
|- ( Rel |^| { x | ph } -> ( ( _V X. _V ) i^i |^| { x | ph } ) = |^| { w e. ~P ( _V X. _V ) | E. x ( w = `' `' x /\ ph ) } ) |
17 |
3 5 16
|
3eqtr3a |
|- ( Rel |^| { x | ph } -> |^| { x | ph } = |^| { w e. ~P ( _V X. _V ) | E. x ( w = `' `' x /\ ph ) } ) |