Metamath Proof Explorer


Theorem relintab

Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020)

Ref Expression
Assertion relintab Relx|φx|φ=w𝒫V×V|xw=x-1-1φ

Proof

Step Hyp Ref Expression
1 cnvcnv x|φ-1-1=x|φV×V
2 incom x|φV×V=V×Vx|φ
3 1 2 eqtri x|φ-1-1=V×Vx|φ
4 dfrel2 Relx|φx|φ-1-1=x|φ
5 4 biimpi Relx|φx|φ-1-1=x|φ
6 relintabex Relx|φxφ
7 6 xpinintabd Relx|φV×Vx|φ=w𝒫V×V|xw=V×Vxφ
8 incom V×Vx=xV×V
9 cnvcnv x-1-1=xV×V
10 8 9 eqtr4i V×Vx=x-1-1
11 10 eqeq2i w=V×Vxw=x-1-1
12 11 anbi1i w=V×Vxφw=x-1-1φ
13 12 exbii xw=V×Vxφxw=x-1-1φ
14 13 rabbii w𝒫V×V|xw=V×Vxφ=w𝒫V×V|xw=x-1-1φ
15 14 inteqi w𝒫V×V|xw=V×Vxφ=w𝒫V×V|xw=x-1-1φ
16 7 15 eqtrdi Relx|φV×Vx|φ=w𝒫V×V|xw=x-1-1φ
17 3 5 16 3eqtr3a Relx|φx|φ=w𝒫V×V|xw=x-1-1φ