Metamath Proof Explorer


Theorem relintabex

Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020)

Ref Expression
Assertion relintabex Rel x | φ x φ

Proof

Step Hyp Ref Expression
1 intnex ¬ x | φ V x | φ = V
2 nrelv ¬ Rel V
3 releq x | φ = V Rel x | φ Rel V
4 2 3 mtbiri x | φ = V ¬ Rel x | φ
5 1 4 sylbi ¬ x | φ V ¬ Rel x | φ
6 5 con4i Rel x | φ x | φ V
7 intexab x φ x | φ V
8 6 7 sylibr Rel x | φ x φ