Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relintabex | |- ( Rel |^| { x | ph } -> E. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnex | |- ( -. |^| { x | ph } e. _V <-> |^| { x | ph } = _V ) |
|
2 | nrelv | |- -. Rel _V |
|
3 | releq | |- ( |^| { x | ph } = _V -> ( Rel |^| { x | ph } <-> Rel _V ) ) |
|
4 | 2 3 | mtbiri | |- ( |^| { x | ph } = _V -> -. Rel |^| { x | ph } ) |
5 | 1 4 | sylbi | |- ( -. |^| { x | ph } e. _V -> -. Rel |^| { x | ph } ) |
6 | 5 | con4i | |- ( Rel |^| { x | ph } -> |^| { x | ph } e. _V ) |
7 | intexab | |- ( E. x ph <-> |^| { x | ph } e. _V ) |
|
8 | 6 7 | sylibr | |- ( Rel |^| { x | ph } -> E. x ph ) |