Metamath Proof Explorer


Theorem relintabex

Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020)

Ref Expression
Assertion relintabex
|- ( Rel |^| { x | ph } -> E. x ph )

Proof

Step Hyp Ref Expression
1 intnex
 |-  ( -. |^| { x | ph } e. _V <-> |^| { x | ph } = _V )
2 nrelv
 |-  -. Rel _V
3 releq
 |-  ( |^| { x | ph } = _V -> ( Rel |^| { x | ph } <-> Rel _V ) )
4 2 3 mtbiri
 |-  ( |^| { x | ph } = _V -> -. Rel |^| { x | ph } )
5 1 4 sylbi
 |-  ( -. |^| { x | ph } e. _V -> -. Rel |^| { x | ph } )
6 5 con4i
 |-  ( Rel |^| { x | ph } -> |^| { x | ph } e. _V )
7 intexab
 |-  ( E. x ph <-> |^| { x | ph } e. _V )
8 6 7 sylibr
 |-  ( Rel |^| { x | ph } -> E. x ph )