Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcnvcnvintab |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv | ||
| 2 | incom | ||
| 3 | 1 2 | eqtri | |
| 4 | 3 | eleq2i | |
| 5 | elinintab | ||
| 6 | 4 5 | bitri |