Metamath Proof Explorer


Theorem elcnvcnvintab

Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020)

Ref Expression
Assertion elcnvcnvintab A x | φ -1 -1 A V × V x φ A x

Proof

Step Hyp Ref Expression
1 cnvcnv x | φ -1 -1 = x | φ V × V
2 incom x | φ V × V = V × V x | φ
3 1 2 eqtri x | φ -1 -1 = V × V x | φ
4 3 eleq2i A x | φ -1 -1 A V × V x | φ
5 elinintab A V × V x | φ A V × V x φ A x
6 4 5 bitri A x | φ -1 -1 A V × V x φ A x