Metamath Proof Explorer


Theorem relintab

Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020)

Ref Expression
Assertion relintab ( Rel { 𝑥𝜑 } → { 𝑥𝜑 } = { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = 𝑥𝜑 ) } )

Proof

Step Hyp Ref Expression
1 cnvcnv { 𝑥𝜑 } = ( { 𝑥𝜑 } ∩ ( V × V ) )
2 incom ( { 𝑥𝜑 } ∩ ( V × V ) ) = ( ( V × V ) ∩ { 𝑥𝜑 } )
3 1 2 eqtri { 𝑥𝜑 } = ( ( V × V ) ∩ { 𝑥𝜑 } )
4 dfrel2 ( Rel { 𝑥𝜑 } ↔ { 𝑥𝜑 } = { 𝑥𝜑 } )
5 4 biimpi ( Rel { 𝑥𝜑 } → { 𝑥𝜑 } = { 𝑥𝜑 } )
6 relintabex ( Rel { 𝑥𝜑 } → ∃ 𝑥 𝜑 )
7 6 xpinintabd ( Rel { 𝑥𝜑 } → ( ( V × V ) ∩ { 𝑥𝜑 } ) = { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ∧ 𝜑 ) } )
8 incom ( ( V × V ) ∩ 𝑥 ) = ( 𝑥 ∩ ( V × V ) )
9 cnvcnv 𝑥 = ( 𝑥 ∩ ( V × V ) )
10 8 9 eqtr4i ( ( V × V ) ∩ 𝑥 ) = 𝑥
11 10 eqeq2i ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ↔ 𝑤 = 𝑥 )
12 11 anbi1i ( ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ∧ 𝜑 ) ↔ ( 𝑤 = 𝑥𝜑 ) )
13 12 exbii ( ∃ 𝑥 ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑤 = 𝑥𝜑 ) )
14 13 rabbii { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ∧ 𝜑 ) } = { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = 𝑥𝜑 ) }
15 14 inteqi { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ∧ 𝜑 ) } = { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = 𝑥𝜑 ) }
16 7 15 eqtrdi ( Rel { 𝑥𝜑 } → ( ( V × V ) ∩ { 𝑥𝜑 } ) = { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = 𝑥𝜑 ) } )
17 3 5 16 3eqtr3a ( Rel { 𝑥𝜑 } → { 𝑥𝜑 } = { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = 𝑥𝜑 ) } )