Step |
Hyp |
Ref |
Expression |
1 |
|
cnvcnv |
⊢ ◡ ◡ ∩ { 𝑥 ∣ 𝜑 } = ( ∩ { 𝑥 ∣ 𝜑 } ∩ ( V × V ) ) |
2 |
|
incom |
⊢ ( ∩ { 𝑥 ∣ 𝜑 } ∩ ( V × V ) ) = ( ( V × V ) ∩ ∩ { 𝑥 ∣ 𝜑 } ) |
3 |
1 2
|
eqtri |
⊢ ◡ ◡ ∩ { 𝑥 ∣ 𝜑 } = ( ( V × V ) ∩ ∩ { 𝑥 ∣ 𝜑 } ) |
4 |
|
dfrel2 |
⊢ ( Rel ∩ { 𝑥 ∣ 𝜑 } ↔ ◡ ◡ ∩ { 𝑥 ∣ 𝜑 } = ∩ { 𝑥 ∣ 𝜑 } ) |
5 |
4
|
biimpi |
⊢ ( Rel ∩ { 𝑥 ∣ 𝜑 } → ◡ ◡ ∩ { 𝑥 ∣ 𝜑 } = ∩ { 𝑥 ∣ 𝜑 } ) |
6 |
|
relintabex |
⊢ ( Rel ∩ { 𝑥 ∣ 𝜑 } → ∃ 𝑥 𝜑 ) |
7 |
6
|
xpinintabd |
⊢ ( Rel ∩ { 𝑥 ∣ 𝜑 } → ( ( V × V ) ∩ ∩ { 𝑥 ∣ 𝜑 } ) = ∩ { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ∧ 𝜑 ) } ) |
8 |
|
incom |
⊢ ( ( V × V ) ∩ 𝑥 ) = ( 𝑥 ∩ ( V × V ) ) |
9 |
|
cnvcnv |
⊢ ◡ ◡ 𝑥 = ( 𝑥 ∩ ( V × V ) ) |
10 |
8 9
|
eqtr4i |
⊢ ( ( V × V ) ∩ 𝑥 ) = ◡ ◡ 𝑥 |
11 |
10
|
eqeq2i |
⊢ ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ↔ 𝑤 = ◡ ◡ 𝑥 ) |
12 |
11
|
anbi1i |
⊢ ( ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ∧ 𝜑 ) ↔ ( 𝑤 = ◡ ◡ 𝑥 ∧ 𝜑 ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑤 = ◡ ◡ 𝑥 ∧ 𝜑 ) ) |
14 |
13
|
rabbii |
⊢ { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ∧ 𝜑 ) } = { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ◡ ◡ 𝑥 ∧ 𝜑 ) } |
15 |
14
|
inteqi |
⊢ ∩ { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ( ( V × V ) ∩ 𝑥 ) ∧ 𝜑 ) } = ∩ { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ◡ ◡ 𝑥 ∧ 𝜑 ) } |
16 |
7 15
|
eqtrdi |
⊢ ( Rel ∩ { 𝑥 ∣ 𝜑 } → ( ( V × V ) ∩ ∩ { 𝑥 ∣ 𝜑 } ) = ∩ { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ◡ ◡ 𝑥 ∧ 𝜑 ) } ) |
17 |
3 5 16
|
3eqtr3a |
⊢ ( Rel ∩ { 𝑥 ∣ 𝜑 } → ∩ { 𝑥 ∣ 𝜑 } = ∩ { 𝑤 ∈ 𝒫 ( V × V ) ∣ ∃ 𝑥 ( 𝑤 = ◡ ◡ 𝑥 ∧ 𝜑 ) } ) |