| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnvcnv | ⊢ ◡ ◡ ∩  { 𝑥  ∣  𝜑 }  =  ( ∩  { 𝑥  ∣  𝜑 }  ∩  ( V  ×  V ) ) | 
						
							| 2 |  | incom | ⊢ ( ∩  { 𝑥  ∣  𝜑 }  ∩  ( V  ×  V ) )  =  ( ( V  ×  V )  ∩  ∩  { 𝑥  ∣  𝜑 } ) | 
						
							| 3 | 1 2 | eqtri | ⊢ ◡ ◡ ∩  { 𝑥  ∣  𝜑 }  =  ( ( V  ×  V )  ∩  ∩  { 𝑥  ∣  𝜑 } ) | 
						
							| 4 |  | dfrel2 | ⊢ ( Rel  ∩  { 𝑥  ∣  𝜑 }  ↔  ◡ ◡ ∩  { 𝑥  ∣  𝜑 }  =  ∩  { 𝑥  ∣  𝜑 } ) | 
						
							| 5 | 4 | biimpi | ⊢ ( Rel  ∩  { 𝑥  ∣  𝜑 }  →  ◡ ◡ ∩  { 𝑥  ∣  𝜑 }  =  ∩  { 𝑥  ∣  𝜑 } ) | 
						
							| 6 |  | relintabex | ⊢ ( Rel  ∩  { 𝑥  ∣  𝜑 }  →  ∃ 𝑥 𝜑 ) | 
						
							| 7 | 6 | xpinintabd | ⊢ ( Rel  ∩  { 𝑥  ∣  𝜑 }  →  ( ( V  ×  V )  ∩  ∩  { 𝑥  ∣  𝜑 } )  =  ∩  { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ( ( V  ×  V )  ∩  𝑥 )  ∧  𝜑 ) } ) | 
						
							| 8 |  | incom | ⊢ ( ( V  ×  V )  ∩  𝑥 )  =  ( 𝑥  ∩  ( V  ×  V ) ) | 
						
							| 9 |  | cnvcnv | ⊢ ◡ ◡ 𝑥  =  ( 𝑥  ∩  ( V  ×  V ) ) | 
						
							| 10 | 8 9 | eqtr4i | ⊢ ( ( V  ×  V )  ∩  𝑥 )  =  ◡ ◡ 𝑥 | 
						
							| 11 | 10 | eqeq2i | ⊢ ( 𝑤  =  ( ( V  ×  V )  ∩  𝑥 )  ↔  𝑤  =  ◡ ◡ 𝑥 ) | 
						
							| 12 | 11 | anbi1i | ⊢ ( ( 𝑤  =  ( ( V  ×  V )  ∩  𝑥 )  ∧  𝜑 )  ↔  ( 𝑤  =  ◡ ◡ 𝑥  ∧  𝜑 ) ) | 
						
							| 13 | 12 | exbii | ⊢ ( ∃ 𝑥 ( 𝑤  =  ( ( V  ×  V )  ∩  𝑥 )  ∧  𝜑 )  ↔  ∃ 𝑥 ( 𝑤  =  ◡ ◡ 𝑥  ∧  𝜑 ) ) | 
						
							| 14 | 13 | rabbii | ⊢ { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ( ( V  ×  V )  ∩  𝑥 )  ∧  𝜑 ) }  =  { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ◡ ◡ 𝑥  ∧  𝜑 ) } | 
						
							| 15 | 14 | inteqi | ⊢ ∩  { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ( ( V  ×  V )  ∩  𝑥 )  ∧  𝜑 ) }  =  ∩  { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ◡ ◡ 𝑥  ∧  𝜑 ) } | 
						
							| 16 | 7 15 | eqtrdi | ⊢ ( Rel  ∩  { 𝑥  ∣  𝜑 }  →  ( ( V  ×  V )  ∩  ∩  { 𝑥  ∣  𝜑 } )  =  ∩  { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ◡ ◡ 𝑥  ∧  𝜑 ) } ) | 
						
							| 17 | 3 5 16 | 3eqtr3a | ⊢ ( Rel  ∩  { 𝑥  ∣  𝜑 }  →  ∩  { 𝑥  ∣  𝜑 }  =  ∩  { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ◡ ◡ 𝑥  ∧  𝜑 ) } ) |