Metamath Proof Explorer


Theorem xpinintabd

Description: Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020)

Ref Expression
Hypothesis xpinintabd.x
|- ( ph -> E. x ps )
Assertion xpinintabd
|- ( ph -> ( ( A X. B ) i^i |^| { x | ps } ) = |^| { w e. ~P ( A X. B ) | E. x ( w = ( ( A X. B ) i^i x ) /\ ps ) } )

Proof

Step Hyp Ref Expression
1 xpinintabd.x
 |-  ( ph -> E. x ps )
2 1 inintabd
 |-  ( ph -> ( ( A X. B ) i^i |^| { x | ps } ) = |^| { w e. ~P ( A X. B ) | E. x ( w = ( ( A X. B ) i^i x ) /\ ps ) } )