Metamath Proof Explorer


Theorem inintabd

Description: Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020)

Ref Expression
Hypothesis inintabd.x
|- ( ph -> E. x ps )
Assertion inintabd
|- ( ph -> ( A i^i |^| { x | ps } ) = |^| { w e. ~P A | E. x ( w = ( A i^i x ) /\ ps ) } )

Proof

Step Hyp Ref Expression
1 inintabd.x
 |-  ( ph -> E. x ps )
2 pm5.5
 |-  ( E. x ps -> ( ( E. x ps -> u e. A ) <-> u e. A ) )
3 1 2 syl
 |-  ( ph -> ( ( E. x ps -> u e. A ) <-> u e. A ) )
4 3 bicomd
 |-  ( ph -> ( u e. A <-> ( E. x ps -> u e. A ) ) )
5 4 anbi1d
 |-  ( ph -> ( ( u e. A /\ A. x ( ps -> u e. x ) ) <-> ( ( E. x ps -> u e. A ) /\ A. x ( ps -> u e. x ) ) ) )
6 elinintab
 |-  ( u e. ( A i^i |^| { x | ps } ) <-> ( u e. A /\ A. x ( ps -> u e. x ) ) )
7 elinintrab
 |-  ( u e. _V -> ( u e. |^| { w e. ~P A | E. x ( w = ( A i^i x ) /\ ps ) } <-> ( ( E. x ps -> u e. A ) /\ A. x ( ps -> u e. x ) ) ) )
8 7 elv
 |-  ( u e. |^| { w e. ~P A | E. x ( w = ( A i^i x ) /\ ps ) } <-> ( ( E. x ps -> u e. A ) /\ A. x ( ps -> u e. x ) ) )
9 5 6 8 3bitr4g
 |-  ( ph -> ( u e. ( A i^i |^| { x | ps } ) <-> u e. |^| { w e. ~P A | E. x ( w = ( A i^i x ) /\ ps ) } ) )
10 9 eqrdv
 |-  ( ph -> ( A i^i |^| { x | ps } ) = |^| { w e. ~P A | E. x ( w = ( A i^i x ) /\ ps ) } )