Metamath Proof Explorer


Theorem inintabd

Description: Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020)

Ref Expression
Hypothesis inintabd.x φ x ψ
Assertion inintabd φ A x | ψ = w 𝒫 A | x w = A x ψ

Proof

Step Hyp Ref Expression
1 inintabd.x φ x ψ
2 pm5.5 x ψ x ψ u A u A
3 1 2 syl φ x ψ u A u A
4 3 bicomd φ u A x ψ u A
5 4 anbi1d φ u A x ψ u x x ψ u A x ψ u x
6 elinintab u A x | ψ u A x ψ u x
7 elinintrab u V u w 𝒫 A | x w = A x ψ x ψ u A x ψ u x
8 7 elv u w 𝒫 A | x w = A x ψ x ψ u A x ψ u x
9 5 6 8 3bitr4g φ u A x | ψ u w 𝒫 A | x w = A x ψ
10 9 eqrdv φ A x | ψ = w 𝒫 A | x w = A x ψ