Metamath Proof Explorer


Theorem xrge0hmph

Description: The extended nonnegative reals are homeomorphic to the closed unit interval. (Contributed by Thierry Arnoux, 24-Mar-2017)

Ref Expression
Assertion xrge0hmph II ≃ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) )
2 eqid ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
3 1 2 iccpnfhmeo ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ∈ ( II Homeo ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) )
4 3 simpri ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ∈ ( II Homeo ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) )
5 hmphi ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ∈ ( II Homeo ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) → II ≃ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) )
6 4 5 ax-mp II ≃ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )