| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
| 2 |
|
eqid |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 3 |
1 2
|
iccpnfhmeo |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ∈ ( II Homeo ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) ) |
| 4 |
3
|
simpri |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ∈ ( II Homeo ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) |
| 5 |
|
hmphi |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ∈ ( II Homeo ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) → II ≃ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) |
| 6 |
4 5
|
ax-mp |
⊢ II ≃ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |