| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpnfhmeo.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) | 
						
							| 2 |  | iccpnfhmeo.k | ⊢ 𝐾  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) ) | 
						
							| 3 |  | iccssxr | ⊢ ( 0 [,] 1 )  ⊆  ℝ* | 
						
							| 4 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 5 |  | soss | ⊢ ( ( 0 [,] 1 )  ⊆  ℝ*  →  (  <   Or  ℝ*  →   <   Or  ( 0 [,] 1 ) ) ) | 
						
							| 6 | 3 4 5 | mp2 | ⊢  <   Or  ( 0 [,] 1 ) | 
						
							| 7 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 8 |  | soss | ⊢ ( ( 0 [,] +∞ )  ⊆  ℝ*  →  (  <   Or  ℝ*  →   <   Or  ( 0 [,] +∞ ) ) ) | 
						
							| 9 | 7 4 8 | mp2 | ⊢  <   Or  ( 0 [,] +∞ ) | 
						
							| 10 |  | sopo | ⊢ (  <   Or  ( 0 [,] +∞ )  →   <   Po  ( 0 [,] +∞ ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢  <   Po  ( 0 [,] +∞ ) | 
						
							| 12 | 1 | iccpnfcnv | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  ∧  ◡ 𝐹  =  ( 𝑦  ∈  ( 0 [,] +∞ )  ↦  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) ) | 
						
							| 13 | 12 | simpli | ⊢ 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) | 
						
							| 14 |  | f1ofo | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  →  𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) | 
						
							| 16 |  | elicc01 | ⊢ ( 𝑧  ∈  ( 0 [,] 1 )  ↔  ( 𝑧  ∈  ℝ  ∧  0  ≤  𝑧  ∧  𝑧  ≤  1 ) ) | 
						
							| 17 | 16 | simp1bi | ⊢ ( 𝑧  ∈  ( 0 [,] 1 )  →  𝑧  ∈  ℝ ) | 
						
							| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑧  ∈  ℝ ) | 
						
							| 19 |  | elicc01 | ⊢ ( 𝑤  ∈  ( 0 [,] 1 )  ↔  ( 𝑤  ∈  ℝ  ∧  0  ≤  𝑤  ∧  𝑤  ≤  1 ) ) | 
						
							| 20 | 19 | simp1bi | ⊢ ( 𝑤  ∈  ( 0 [,] 1 )  →  𝑤  ∈  ℝ ) | 
						
							| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑤  ∈  ℝ ) | 
						
							| 22 |  | 1red | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  1  ∈  ℝ ) | 
						
							| 23 |  | simp3 | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑧  <  𝑤 ) | 
						
							| 24 | 19 | simp3bi | ⊢ ( 𝑤  ∈  ( 0 [,] 1 )  →  𝑤  ≤  1 ) | 
						
							| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑤  ≤  1 ) | 
						
							| 26 | 18 21 22 23 25 | ltletrd | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑧  <  1 ) | 
						
							| 27 | 18 26 | gtned | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  1  ≠  𝑧 ) | 
						
							| 28 | 27 | necomd | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑧  ≠  1 ) | 
						
							| 29 |  | ifnefalse | ⊢ ( 𝑧  ≠  1  →  if ( 𝑧  =  1 ,  +∞ ,  ( 𝑧  /  ( 1  −  𝑧 ) ) )  =  ( 𝑧  /  ( 1  −  𝑧 ) ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  if ( 𝑧  =  1 ,  +∞ ,  ( 𝑧  /  ( 1  −  𝑧 ) ) )  =  ( 𝑧  /  ( 1  −  𝑧 ) ) ) | 
						
							| 31 |  | breq2 | ⊢ ( +∞  =  if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) )  →  ( ( 𝑧  /  ( 1  −  𝑧 ) )  <  +∞  ↔  ( 𝑧  /  ( 1  −  𝑧 ) )  <  if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) ) | 
						
							| 32 |  | breq2 | ⊢ ( ( 𝑤  /  ( 1  −  𝑤 ) )  =  if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) )  →  ( ( 𝑧  /  ( 1  −  𝑧 ) )  <  ( 𝑤  /  ( 1  −  𝑤 ) )  ↔  ( 𝑧  /  ( 1  −  𝑧 ) )  <  if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) ) | 
						
							| 33 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 34 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 1  −  𝑧 )  ∈  ℝ ) | 
						
							| 35 | 33 18 34 | sylancr | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( 1  −  𝑧 )  ∈  ℝ ) | 
						
							| 36 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 37 | 18 | recnd | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑧  ∈  ℂ ) | 
						
							| 38 |  | subeq0 | ⊢ ( ( 1  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 1  −  𝑧 )  =  0  ↔  1  =  𝑧 ) ) | 
						
							| 39 | 38 | necon3bid | ⊢ ( ( 1  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 1  −  𝑧 )  ≠  0  ↔  1  ≠  𝑧 ) ) | 
						
							| 40 | 36 37 39 | sylancr | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( ( 1  −  𝑧 )  ≠  0  ↔  1  ≠  𝑧 ) ) | 
						
							| 41 | 27 40 | mpbird | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( 1  −  𝑧 )  ≠  0 ) | 
						
							| 42 | 18 35 41 | redivcld | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( 𝑧  /  ( 1  −  𝑧 ) )  ∈  ℝ ) | 
						
							| 43 | 42 | ltpnfd | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( 𝑧  /  ( 1  −  𝑧 ) )  <  +∞ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  𝑤  =  1 )  →  ( 𝑧  /  ( 1  −  𝑧 ) )  <  +∞ ) | 
						
							| 45 |  | simpl3 | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  𝑤  =  1 )  →  𝑧  <  𝑤 ) | 
						
							| 46 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) | 
						
							| 47 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 48 | 46 47 | icopnfhmeo | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ∧  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 0 [,) 1 ) ) Homeo ( ( TopOpen ‘ ℂfld )  ↾t  ( 0 [,) +∞ ) ) ) ) | 
						
							| 49 | 48 | simpli | ⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) | 
						
							| 50 | 49 | a1i | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  𝑤  =  1 )  →  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) ) | 
						
							| 51 |  | simp1 | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑧  ∈  ( 0 [,] 1 ) ) | 
						
							| 52 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 53 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 54 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 55 |  | snunico | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  0  ≤  1 )  →  ( ( 0 [,) 1 )  ∪  { 1 } )  =  ( 0 [,] 1 ) ) | 
						
							| 56 | 52 53 54 55 | mp3an | ⊢ ( ( 0 [,) 1 )  ∪  { 1 } )  =  ( 0 [,] 1 ) | 
						
							| 57 | 51 56 | eleqtrrdi | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑧  ∈  ( ( 0 [,) 1 )  ∪  { 1 } ) ) | 
						
							| 58 |  | elun | ⊢ ( 𝑧  ∈  ( ( 0 [,) 1 )  ∪  { 1 } )  ↔  ( 𝑧  ∈  ( 0 [,) 1 )  ∨  𝑧  ∈  { 1 } ) ) | 
						
							| 59 | 57 58 | sylib | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( 𝑧  ∈  ( 0 [,) 1 )  ∨  𝑧  ∈  { 1 } ) ) | 
						
							| 60 | 59 | ord | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( ¬  𝑧  ∈  ( 0 [,) 1 )  →  𝑧  ∈  { 1 } ) ) | 
						
							| 61 |  | elsni | ⊢ ( 𝑧  ∈  { 1 }  →  𝑧  =  1 ) | 
						
							| 62 | 60 61 | syl6 | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( ¬  𝑧  ∈  ( 0 [,) 1 )  →  𝑧  =  1 ) ) | 
						
							| 63 | 62 | necon1ad | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( 𝑧  ≠  1  →  𝑧  ∈  ( 0 [,) 1 ) ) ) | 
						
							| 64 | 28 63 | mpd | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑧  ∈  ( 0 [,) 1 ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  𝑤  =  1 )  →  𝑧  ∈  ( 0 [,) 1 ) ) | 
						
							| 66 |  | simp2 | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑤  ∈  ( 0 [,] 1 ) ) | 
						
							| 67 | 66 56 | eleqtrrdi | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  𝑤  ∈  ( ( 0 [,) 1 )  ∪  { 1 } ) ) | 
						
							| 68 |  | elun | ⊢ ( 𝑤  ∈  ( ( 0 [,) 1 )  ∪  { 1 } )  ↔  ( 𝑤  ∈  ( 0 [,) 1 )  ∨  𝑤  ∈  { 1 } ) ) | 
						
							| 69 | 67 68 | sylib | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( 𝑤  ∈  ( 0 [,) 1 )  ∨  𝑤  ∈  { 1 } ) ) | 
						
							| 70 | 69 | ord | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( ¬  𝑤  ∈  ( 0 [,) 1 )  →  𝑤  ∈  { 1 } ) ) | 
						
							| 71 |  | elsni | ⊢ ( 𝑤  ∈  { 1 }  →  𝑤  =  1 ) | 
						
							| 72 | 70 71 | syl6 | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( ¬  𝑤  ∈  ( 0 [,) 1 )  →  𝑤  =  1 ) ) | 
						
							| 73 | 72 | con1d | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( ¬  𝑤  =  1  →  𝑤  ∈  ( 0 [,) 1 ) ) ) | 
						
							| 74 | 73 | imp | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  𝑤  =  1 )  →  𝑤  ∈  ( 0 [,) 1 ) ) | 
						
							| 75 |  | isorel | ⊢ ( ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ∧  ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) ) )  →  ( 𝑧  <  𝑤  ↔  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑧 )  <  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑤 ) ) ) | 
						
							| 76 | 50 65 74 75 | syl12anc | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  𝑤  =  1 )  →  ( 𝑧  <  𝑤  ↔  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑧 )  <  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑤 ) ) ) | 
						
							| 77 | 45 76 | mpbid | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  𝑤  =  1 )  →  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑧 )  <  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑤 ) ) | 
						
							| 78 |  | id | ⊢ ( 𝑥  =  𝑧  →  𝑥  =  𝑧 ) | 
						
							| 79 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 1  −  𝑥 )  =  ( 1  −  𝑧 ) ) | 
						
							| 80 | 78 79 | oveq12d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  /  ( 1  −  𝑥 ) )  =  ( 𝑧  /  ( 1  −  𝑧 ) ) ) | 
						
							| 81 |  | ovex | ⊢ ( 𝑧  /  ( 1  −  𝑧 ) )  ∈  V | 
						
							| 82 | 80 46 81 | fvmpt | ⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑧 )  =  ( 𝑧  /  ( 1  −  𝑧 ) ) ) | 
						
							| 83 | 65 82 | syl | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  𝑤  =  1 )  →  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑧 )  =  ( 𝑧  /  ( 1  −  𝑧 ) ) ) | 
						
							| 84 |  | id | ⊢ ( 𝑥  =  𝑤  →  𝑥  =  𝑤 ) | 
						
							| 85 |  | oveq2 | ⊢ ( 𝑥  =  𝑤  →  ( 1  −  𝑥 )  =  ( 1  −  𝑤 ) ) | 
						
							| 86 | 84 85 | oveq12d | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  /  ( 1  −  𝑥 ) )  =  ( 𝑤  /  ( 1  −  𝑤 ) ) ) | 
						
							| 87 |  | ovex | ⊢ ( 𝑤  /  ( 1  −  𝑤 ) )  ∈  V | 
						
							| 88 | 86 46 87 | fvmpt | ⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑤 )  =  ( 𝑤  /  ( 1  −  𝑤 ) ) ) | 
						
							| 89 | 74 88 | syl | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  𝑤  =  1 )  →  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑤 )  =  ( 𝑤  /  ( 1  −  𝑤 ) ) ) | 
						
							| 90 | 77 83 89 | 3brtr3d | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  𝑤  =  1 )  →  ( 𝑧  /  ( 1  −  𝑧 ) )  <  ( 𝑤  /  ( 1  −  𝑤 ) ) ) | 
						
							| 91 | 31 32 44 90 | ifbothda | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  ( 𝑧  /  ( 1  −  𝑧 ) )  <  if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) | 
						
							| 92 | 30 91 | eqbrtrd | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 )  ∧  𝑧  <  𝑤 )  →  if ( 𝑧  =  1 ,  +∞ ,  ( 𝑧  /  ( 1  −  𝑧 ) ) )  <  if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) | 
						
							| 93 | 92 | 3expia | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 ) )  →  ( 𝑧  <  𝑤  →  if ( 𝑧  =  1 ,  +∞ ,  ( 𝑧  /  ( 1  −  𝑧 ) ) )  <  if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) ) | 
						
							| 94 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  1  ↔  𝑧  =  1 ) ) | 
						
							| 95 | 94 80 | ifbieq2d | ⊢ ( 𝑥  =  𝑧  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  if ( 𝑧  =  1 ,  +∞ ,  ( 𝑧  /  ( 1  −  𝑧 ) ) ) ) | 
						
							| 96 |  | pnfex | ⊢ +∞  ∈  V | 
						
							| 97 | 96 81 | ifex | ⊢ if ( 𝑧  =  1 ,  +∞ ,  ( 𝑧  /  ( 1  −  𝑧 ) ) )  ∈  V | 
						
							| 98 | 95 1 97 | fvmpt | ⊢ ( 𝑧  ∈  ( 0 [,] 1 )  →  ( 𝐹 ‘ 𝑧 )  =  if ( 𝑧  =  1 ,  +∞ ,  ( 𝑧  /  ( 1  −  𝑧 ) ) ) ) | 
						
							| 99 |  | eqeq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  =  1  ↔  𝑤  =  1 ) ) | 
						
							| 100 | 99 86 | ifbieq2d | ⊢ ( 𝑥  =  𝑤  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) | 
						
							| 101 | 96 87 | ifex | ⊢ if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) )  ∈  V | 
						
							| 102 | 100 1 101 | fvmpt | ⊢ ( 𝑤  ∈  ( 0 [,] 1 )  →  ( 𝐹 ‘ 𝑤 )  =  if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) | 
						
							| 103 | 98 102 | breqan12d | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 )  ↔  if ( 𝑧  =  1 ,  +∞ ,  ( 𝑧  /  ( 1  −  𝑧 ) ) )  <  if ( 𝑤  =  1 ,  +∞ ,  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) ) | 
						
							| 104 | 93 103 | sylibrd | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 ) )  →  ( 𝑧  <  𝑤  →  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 105 | 104 | rgen2 | ⊢ ∀ 𝑧  ∈  ( 0 [,] 1 ) ∀ 𝑤  ∈  ( 0 [,] 1 ) ( 𝑧  <  𝑤  →  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 106 |  | soisoi | ⊢ ( ( (  <   Or  ( 0 [,] 1 )  ∧   <   Po  ( 0 [,] +∞ ) )  ∧  ( 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ )  ∧  ∀ 𝑧  ∈  ( 0 [,] 1 ) ∀ 𝑤  ∈  ( 0 [,] 1 ) ( 𝑧  <  𝑤  →  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) ) )  →  𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) ) | 
						
							| 107 | 6 11 15 105 106 | mp4an | ⊢ 𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) | 
						
							| 108 |  | letsr | ⊢  ≤   ∈   TosetRel | 
						
							| 109 | 108 | elexi | ⊢  ≤   ∈  V | 
						
							| 110 | 109 | inex1 | ⊢ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  ∈  V | 
						
							| 111 | 109 | inex1 | ⊢ (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  ∈  V | 
						
							| 112 |  | leiso | ⊢ ( ( ( 0 [,] 1 )  ⊆  ℝ*  ∧  ( 0 [,] +∞ )  ⊆  ℝ* )  →  ( 𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ↔  𝐹  Isom   ≤  ,   ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) ) ) | 
						
							| 113 | 3 7 112 | mp2an | ⊢ ( 𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ↔  𝐹  Isom   ≤  ,   ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) ) | 
						
							| 114 | 107 113 | mpbi | ⊢ 𝐹  Isom   ≤  ,   ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) | 
						
							| 115 |  | isores1 | ⊢ ( 𝐹  Isom   ≤  ,   ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ↔  𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,   ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) ) | 
						
							| 116 | 114 115 | mpbi | ⊢ 𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,   ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) | 
						
							| 117 |  | isores2 | ⊢ ( 𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,   ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ↔  𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,  (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) ) | 
						
							| 118 | 116 117 | mpbi | ⊢ 𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,  (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) | 
						
							| 119 |  | tsrps | ⊢ (  ≤   ∈   TosetRel   →   ≤   ∈  PosetRel ) | 
						
							| 120 | 108 119 | ax-mp | ⊢  ≤   ∈  PosetRel | 
						
							| 121 |  | ledm | ⊢ ℝ*  =  dom   ≤ | 
						
							| 122 | 121 | psssdm | ⊢ ( (  ≤   ∈  PosetRel  ∧  ( 0 [,] 1 )  ⊆  ℝ* )  →  dom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  =  ( 0 [,] 1 ) ) | 
						
							| 123 | 120 3 122 | mp2an | ⊢ dom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  =  ( 0 [,] 1 ) | 
						
							| 124 | 123 | eqcomi | ⊢ ( 0 [,] 1 )  =  dom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 125 | 121 | psssdm | ⊢ ( (  ≤   ∈  PosetRel  ∧  ( 0 [,] +∞ )  ⊆  ℝ* )  →  dom  (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  =  ( 0 [,] +∞ ) ) | 
						
							| 126 | 120 7 125 | mp2an | ⊢ dom  (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  =  ( 0 [,] +∞ ) | 
						
							| 127 | 126 | eqcomi | ⊢ ( 0 [,] +∞ )  =  dom  (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) | 
						
							| 128 | 124 127 | ordthmeo | ⊢ ( ( (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  ∈  V  ∧  (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  ∈  V  ∧  𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,  (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) )  →  𝐹  ∈  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ) ) ) | 
						
							| 129 | 110 111 118 128 | mp3an | ⊢ 𝐹  ∈  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ) ) | 
						
							| 130 |  | dfii5 | ⊢ II  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 131 |  | ordtresticc | ⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ) | 
						
							| 132 | 2 131 | eqtri | ⊢ 𝐾  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ) | 
						
							| 133 | 130 132 | oveq12i | ⊢ ( II Homeo 𝐾 )  =  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ) ) | 
						
							| 134 | 129 133 | eleqtrri | ⊢ 𝐹  ∈  ( II Homeo 𝐾 ) | 
						
							| 135 | 107 134 | pm3.2i | ⊢ ( 𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ∧  𝐹  ∈  ( II Homeo 𝐾 ) ) |