| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lerel | 
							⊢ Rel   ≤   | 
						
						
							| 2 | 
							
								
							 | 
							lerelxr | 
							⊢  ≤   ⊆  ( ℝ*  ×  ℝ* )  | 
						
						
							| 3 | 
							
								2
							 | 
							brel | 
							⊢ ( 𝑥  ≤  𝑦  →  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							simpld | 
							⊢ ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ∈  ℝ* )  | 
						
						
							| 6 | 
							
								4
							 | 
							simprd | 
							⊢ ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 7 | 
							
								2
							 | 
							brel | 
							⊢ ( 𝑦  ≤  𝑧  →  ( 𝑦  ∈  ℝ*  ∧  𝑧  ∈  ℝ* ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							simprd | 
							⊢ ( 𝑦  ≤  𝑧  →  𝑧  ∈  ℝ* )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantl | 
							⊢ ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑧  ∈  ℝ* )  | 
						
						
							| 10 | 
							
								5 6 9
							 | 
							3jca | 
							⊢ ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ*  ∧  𝑧  ∈  ℝ* ) )  | 
						
						
							| 11 | 
							
								
							 | 
							xrletr | 
							⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ*  ∧  𝑧  ∈  ℝ* )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mpcom | 
							⊢ ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 )  | 
						
						
							| 13 | 
							
								12
							 | 
							ax-gen | 
							⊢ ∀ 𝑧 ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 )  | 
						
						
							| 14 | 
							
								13
							 | 
							gen2 | 
							⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 )  | 
						
						
							| 15 | 
							
								
							 | 
							cotr | 
							⊢ ( (  ≤   ∘   ≤  )  ⊆   ≤   ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mpbir | 
							⊢ (  ≤   ∘   ≤  )  ⊆   ≤   | 
						
						
							| 17 | 
							
								
							 | 
							asymref | 
							⊢ ( (  ≤   ∩  ◡  ≤  )  =  (  I   ↾  ∪  ∪   ≤  )  ↔  ∀ 𝑥  ∈  ∪  ∪   ≤  ∀ 𝑦 ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  ↔  𝑥  =  𝑦 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑥  ∈  ℝ*  ∧  ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 ) )  →  ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 ) )  | 
						
						
							| 19 | 
							
								2
							 | 
							brel | 
							⊢ ( 𝑦  ≤  𝑥  →  ( 𝑦  ∈  ℝ*  ∧  𝑥  ∈  ℝ* ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							simpld | 
							⊢ ( 𝑦  ≤  𝑥  →  𝑦  ∈  ℝ* )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantl | 
							⊢ ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 22 | 
							
								
							 | 
							xrletri3 | 
							⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  ( 𝑥  =  𝑦  ↔  ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 ) ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							sylan2 | 
							⊢ ( ( 𝑥  ∈  ℝ*  ∧  ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 ) )  →  ( 𝑥  =  𝑦  ↔  ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 ) ) )  | 
						
						
							| 24 | 
							
								18 23
							 | 
							mpbird | 
							⊢ ( ( 𝑥  ∈  ℝ*  ∧  ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 ) )  →  𝑥  =  𝑦 )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( 𝑥  ∈  ℝ*  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  →  𝑥  =  𝑦 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							xrleid | 
							⊢ ( 𝑥  ∈  ℝ*  →  𝑥  ≤  𝑥 )  | 
						
						
							| 27 | 
							
								26 26
							 | 
							jca | 
							⊢ ( 𝑥  ∈  ℝ*  →  ( 𝑥  ≤  𝑥  ∧  𝑥  ≤  𝑥 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ≤  𝑥  ↔  𝑥  ≤  𝑦 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ≤  𝑥  ↔  𝑦  ≤  𝑥 ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ≤  𝑥  ∧  𝑥  ≤  𝑥 )  ↔  ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 ) ) )  | 
						
						
							| 31 | 
							
								27 30
							 | 
							syl5ibcom | 
							⊢ ( 𝑥  ∈  ℝ*  →  ( 𝑥  =  𝑦  →  ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 ) ) )  | 
						
						
							| 32 | 
							
								25 31
							 | 
							impbid | 
							⊢ ( 𝑥  ∈  ℝ*  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  ↔  𝑥  =  𝑦 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							alrimiv | 
							⊢ ( 𝑥  ∈  ℝ*  →  ∀ 𝑦 ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  ↔  𝑥  =  𝑦 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							lefld | 
							⊢ ℝ*  =  ∪  ∪   ≤   | 
						
						
							| 35 | 
							
								34
							 | 
							eqcomi | 
							⊢ ∪  ∪   ≤   =  ℝ*  | 
						
						
							| 36 | 
							
								33 35
							 | 
							eleq2s | 
							⊢ ( 𝑥  ∈  ∪  ∪   ≤   →  ∀ 𝑦 ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  ↔  𝑥  =  𝑦 ) )  | 
						
						
							| 37 | 
							
								17 36
							 | 
							mprgbir | 
							⊢ (  ≤   ∩  ◡  ≤  )  =  (  I   ↾  ∪  ∪   ≤  )  | 
						
						
							| 38 | 
							
								
							 | 
							xrex | 
							⊢ ℝ*  ∈  V  | 
						
						
							| 39 | 
							
								38 38
							 | 
							xpex | 
							⊢ ( ℝ*  ×  ℝ* )  ∈  V  | 
						
						
							| 40 | 
							
								39 2
							 | 
							ssexi | 
							⊢  ≤   ∈  V  | 
						
						
							| 41 | 
							
								
							 | 
							isps | 
							⊢ (  ≤   ∈  V  →  (  ≤   ∈  PosetRel  ↔  ( Rel   ≤   ∧  (  ≤   ∘   ≤  )  ⊆   ≤   ∧  (  ≤   ∩  ◡  ≤  )  =  (  I   ↾  ∪  ∪   ≤  ) ) ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							ax-mp | 
							⊢ (  ≤   ∈  PosetRel  ↔  ( Rel   ≤   ∧  (  ≤   ∘   ≤  )  ⊆   ≤   ∧  (  ≤   ∩  ◡  ≤  )  =  (  I   ↾  ∪  ∪   ≤  ) ) )  | 
						
						
							| 43 | 
							
								1 16 37 42
							 | 
							mpbir3an | 
							⊢  ≤   ∈  PosetRel  | 
						
						
							| 44 | 
							
								
							 | 
							xrletri | 
							⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  ( 𝑥  ≤  𝑦  ∨  𝑦  ≤  𝑥 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							rgen2 | 
							⊢ ∀ 𝑥  ∈  ℝ* ∀ 𝑦  ∈  ℝ* ( 𝑥  ≤  𝑦  ∨  𝑦  ≤  𝑥 )  | 
						
						
							| 46 | 
							
								
							 | 
							qfto | 
							⊢ ( ( ℝ*  ×  ℝ* )  ⊆  (  ≤   ∪  ◡  ≤  )  ↔  ∀ 𝑥  ∈  ℝ* ∀ 𝑦  ∈  ℝ* ( 𝑥  ≤  𝑦  ∨  𝑦  ≤  𝑥 ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							mpbir | 
							⊢ ( ℝ*  ×  ℝ* )  ⊆  (  ≤   ∪  ◡  ≤  )  | 
						
						
							| 48 | 
							
								
							 | 
							ledm | 
							⊢ ℝ*  =  dom   ≤   | 
						
						
							| 49 | 
							
								48
							 | 
							istsr | 
							⊢ (  ≤   ∈   TosetRel   ↔  (  ≤   ∈  PosetRel  ∧  ( ℝ*  ×  ℝ* )  ⊆  (  ≤   ∪  ◡  ≤  ) ) )  | 
						
						
							| 50 | 
							
								43 47 49
							 | 
							mpbir2an | 
							⊢  ≤   ∈   TosetRel   |