| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpnfhmeo.f |  |-  F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) | 
						
							| 2 |  | iccpnfhmeo.k |  |-  K = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) | 
						
							| 3 |  | iccssxr |  |-  ( 0 [,] 1 ) C_ RR* | 
						
							| 4 |  | xrltso |  |-  < Or RR* | 
						
							| 5 |  | soss |  |-  ( ( 0 [,] 1 ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] 1 ) ) ) | 
						
							| 6 | 3 4 5 | mp2 |  |-  < Or ( 0 [,] 1 ) | 
						
							| 7 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 8 |  | soss |  |-  ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) ) | 
						
							| 9 | 7 4 8 | mp2 |  |-  < Or ( 0 [,] +oo ) | 
						
							| 10 |  | sopo |  |-  ( < Or ( 0 [,] +oo ) -> < Po ( 0 [,] +oo ) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  < Po ( 0 [,] +oo ) | 
						
							| 12 | 1 | iccpnfcnv |  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) | 
						
							| 13 | 12 | simpli |  |-  F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) | 
						
							| 14 |  | f1ofo |  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) ) | 
						
							| 15 | 13 14 | ax-mp |  |-  F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) | 
						
							| 16 |  | elicc01 |  |-  ( z e. ( 0 [,] 1 ) <-> ( z e. RR /\ 0 <_ z /\ z <_ 1 ) ) | 
						
							| 17 | 16 | simp1bi |  |-  ( z e. ( 0 [,] 1 ) -> z e. RR ) | 
						
							| 18 | 17 | 3ad2ant1 |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. RR ) | 
						
							| 19 |  | elicc01 |  |-  ( w e. ( 0 [,] 1 ) <-> ( w e. RR /\ 0 <_ w /\ w <_ 1 ) ) | 
						
							| 20 | 19 | simp1bi |  |-  ( w e. ( 0 [,] 1 ) -> w e. RR ) | 
						
							| 21 | 20 | 3ad2ant2 |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. RR ) | 
						
							| 22 |  | 1red |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> 1 e. RR ) | 
						
							| 23 |  | simp3 |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z < w ) | 
						
							| 24 | 19 | simp3bi |  |-  ( w e. ( 0 [,] 1 ) -> w <_ 1 ) | 
						
							| 25 | 24 | 3ad2ant2 |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w <_ 1 ) | 
						
							| 26 | 18 21 22 23 25 | ltletrd |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z < 1 ) | 
						
							| 27 | 18 26 | gtned |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> 1 =/= z ) | 
						
							| 28 | 27 | necomd |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z =/= 1 ) | 
						
							| 29 |  | ifnefalse |  |-  ( z =/= 1 -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) = ( z / ( 1 - z ) ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) = ( z / ( 1 - z ) ) ) | 
						
							| 31 |  | breq2 |  |-  ( +oo = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) -> ( ( z / ( 1 - z ) ) < +oo <-> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) | 
						
							| 32 |  | breq2 |  |-  ( ( w / ( 1 - w ) ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) -> ( ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) <-> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) | 
						
							| 33 |  | 1re |  |-  1 e. RR | 
						
							| 34 |  | resubcl |  |-  ( ( 1 e. RR /\ z e. RR ) -> ( 1 - z ) e. RR ) | 
						
							| 35 | 33 18 34 | sylancr |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( 1 - z ) e. RR ) | 
						
							| 36 |  | ax-1cn |  |-  1 e. CC | 
						
							| 37 | 18 | recnd |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. CC ) | 
						
							| 38 |  | subeq0 |  |-  ( ( 1 e. CC /\ z e. CC ) -> ( ( 1 - z ) = 0 <-> 1 = z ) ) | 
						
							| 39 | 38 | necon3bid |  |-  ( ( 1 e. CC /\ z e. CC ) -> ( ( 1 - z ) =/= 0 <-> 1 =/= z ) ) | 
						
							| 40 | 36 37 39 | sylancr |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( ( 1 - z ) =/= 0 <-> 1 =/= z ) ) | 
						
							| 41 | 27 40 | mpbird |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( 1 - z ) =/= 0 ) | 
						
							| 42 | 18 35 41 | redivcld |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) e. RR ) | 
						
							| 43 | 42 | ltpnfd |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) < +oo ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ w = 1 ) -> ( z / ( 1 - z ) ) < +oo ) | 
						
							| 45 |  | simpl3 |  |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> z < w ) | 
						
							| 46 |  | eqid |  |-  ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) | 
						
							| 47 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 48 | 46 47 | icopnfhmeo |  |-  ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) 1 ) ) Homeo ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ) | 
						
							| 49 | 48 | simpli |  |-  ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) | 
						
							| 50 | 49 | a1i |  |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) | 
						
							| 51 |  | simp1 |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( 0 [,] 1 ) ) | 
						
							| 52 |  | 0xr |  |-  0 e. RR* | 
						
							| 53 |  | 1xr |  |-  1 e. RR* | 
						
							| 54 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 55 |  | snunico |  |-  ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) ) | 
						
							| 56 | 52 53 54 55 | mp3an |  |-  ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) | 
						
							| 57 | 51 56 | eleqtrrdi |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( ( 0 [,) 1 ) u. { 1 } ) ) | 
						
							| 58 |  | elun |  |-  ( z e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( z e. ( 0 [,) 1 ) \/ z e. { 1 } ) ) | 
						
							| 59 | 57 58 | sylib |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z e. ( 0 [,) 1 ) \/ z e. { 1 } ) ) | 
						
							| 60 | 59 | ord |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. z e. ( 0 [,) 1 ) -> z e. { 1 } ) ) | 
						
							| 61 |  | elsni |  |-  ( z e. { 1 } -> z = 1 ) | 
						
							| 62 | 60 61 | syl6 |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. z e. ( 0 [,) 1 ) -> z = 1 ) ) | 
						
							| 63 | 62 | necon1ad |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z =/= 1 -> z e. ( 0 [,) 1 ) ) ) | 
						
							| 64 | 28 63 | mpd |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( 0 [,) 1 ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> z e. ( 0 [,) 1 ) ) | 
						
							| 66 |  | simp2 |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. ( 0 [,] 1 ) ) | 
						
							| 67 | 66 56 | eleqtrrdi |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. ( ( 0 [,) 1 ) u. { 1 } ) ) | 
						
							| 68 |  | elun |  |-  ( w e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( w e. ( 0 [,) 1 ) \/ w e. { 1 } ) ) | 
						
							| 69 | 67 68 | sylib |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( w e. ( 0 [,) 1 ) \/ w e. { 1 } ) ) | 
						
							| 70 | 69 | ord |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w e. ( 0 [,) 1 ) -> w e. { 1 } ) ) | 
						
							| 71 |  | elsni |  |-  ( w e. { 1 } -> w = 1 ) | 
						
							| 72 | 70 71 | syl6 |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w e. ( 0 [,) 1 ) -> w = 1 ) ) | 
						
							| 73 | 72 | con1d |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w = 1 -> w e. ( 0 [,) 1 ) ) ) | 
						
							| 74 | 73 | imp |  |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> w e. ( 0 [,) 1 ) ) | 
						
							| 75 |  | isorel |  |-  ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) ) -> ( z < w <-> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) ) | 
						
							| 76 | 50 65 74 75 | syl12anc |  |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( z < w <-> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) ) | 
						
							| 77 | 45 76 | mpbid |  |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) | 
						
							| 78 |  | id |  |-  ( x = z -> x = z ) | 
						
							| 79 |  | oveq2 |  |-  ( x = z -> ( 1 - x ) = ( 1 - z ) ) | 
						
							| 80 | 78 79 | oveq12d |  |-  ( x = z -> ( x / ( 1 - x ) ) = ( z / ( 1 - z ) ) ) | 
						
							| 81 |  | ovex |  |-  ( z / ( 1 - z ) ) e. _V | 
						
							| 82 | 80 46 81 | fvmpt |  |-  ( z e. ( 0 [,) 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) = ( z / ( 1 - z ) ) ) | 
						
							| 83 | 65 82 | syl |  |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) = ( z / ( 1 - z ) ) ) | 
						
							| 84 |  | id |  |-  ( x = w -> x = w ) | 
						
							| 85 |  | oveq2 |  |-  ( x = w -> ( 1 - x ) = ( 1 - w ) ) | 
						
							| 86 | 84 85 | oveq12d |  |-  ( x = w -> ( x / ( 1 - x ) ) = ( w / ( 1 - w ) ) ) | 
						
							| 87 |  | ovex |  |-  ( w / ( 1 - w ) ) e. _V | 
						
							| 88 | 86 46 87 | fvmpt |  |-  ( w e. ( 0 [,) 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) = ( w / ( 1 - w ) ) ) | 
						
							| 89 | 74 88 | syl |  |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) = ( w / ( 1 - w ) ) ) | 
						
							| 90 | 77 83 89 | 3brtr3d |  |-  ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) | 
						
							| 91 | 31 32 44 90 | ifbothda |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) | 
						
							| 92 | 30 91 | eqbrtrd |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) | 
						
							| 93 | 92 | 3expia |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) | 
						
							| 94 |  | eqeq1 |  |-  ( x = z -> ( x = 1 <-> z = 1 ) ) | 
						
							| 95 | 94 80 | ifbieq2d |  |-  ( x = z -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) ) | 
						
							| 96 |  | pnfex |  |-  +oo e. _V | 
						
							| 97 | 96 81 | ifex |  |-  if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) e. _V | 
						
							| 98 | 95 1 97 | fvmpt |  |-  ( z e. ( 0 [,] 1 ) -> ( F ` z ) = if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) ) | 
						
							| 99 |  | eqeq1 |  |-  ( x = w -> ( x = 1 <-> w = 1 ) ) | 
						
							| 100 | 99 86 | ifbieq2d |  |-  ( x = w -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) | 
						
							| 101 | 96 87 | ifex |  |-  if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) e. _V | 
						
							| 102 | 100 1 101 | fvmpt |  |-  ( w e. ( 0 [,] 1 ) -> ( F ` w ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) | 
						
							| 103 | 98 102 | breqan12d |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( ( F ` z ) < ( F ` w ) <-> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) | 
						
							| 104 | 93 103 | sylibrd |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w -> ( F ` z ) < ( F ` w ) ) ) | 
						
							| 105 | 104 | rgen2 |  |-  A. z e. ( 0 [,] 1 ) A. w e. ( 0 [,] 1 ) ( z < w -> ( F ` z ) < ( F ` w ) ) | 
						
							| 106 |  | soisoi |  |-  ( ( ( < Or ( 0 [,] 1 ) /\ < Po ( 0 [,] +oo ) ) /\ ( F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) /\ A. z e. ( 0 [,] 1 ) A. w e. ( 0 [,] 1 ) ( z < w -> ( F ` z ) < ( F ` w ) ) ) ) -> F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) | 
						
							| 107 | 6 11 15 105 106 | mp4an |  |-  F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) | 
						
							| 108 |  | letsr |  |-  <_ e. TosetRel | 
						
							| 109 | 108 | elexi |  |-  <_ e. _V | 
						
							| 110 | 109 | inex1 |  |-  ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V | 
						
							| 111 | 109 | inex1 |  |-  ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V | 
						
							| 112 |  | leiso |  |-  ( ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) -> ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) ) | 
						
							| 113 | 3 7 112 | mp2an |  |-  ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) | 
						
							| 114 | 107 113 | mpbi |  |-  F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) | 
						
							| 115 |  | isores1 |  |-  ( F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) | 
						
							| 116 | 114 115 | mpbi |  |-  F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) | 
						
							| 117 |  | isores2 |  |-  ( F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) | 
						
							| 118 | 116 117 | mpbi |  |-  F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) | 
						
							| 119 |  | tsrps |  |-  ( <_ e. TosetRel -> <_ e. PosetRel ) | 
						
							| 120 | 108 119 | ax-mp |  |-  <_ e. PosetRel | 
						
							| 121 |  | ledm |  |-  RR* = dom <_ | 
						
							| 122 | 121 | psssdm |  |-  ( ( <_ e. PosetRel /\ ( 0 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) ) | 
						
							| 123 | 120 3 122 | mp2an |  |-  dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) | 
						
							| 124 | 123 | eqcomi |  |-  ( 0 [,] 1 ) = dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 125 | 121 | psssdm |  |-  ( ( <_ e. PosetRel /\ ( 0 [,] +oo ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) ) | 
						
							| 126 | 120 7 125 | mp2an |  |-  dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) | 
						
							| 127 | 126 | eqcomi |  |-  ( 0 [,] +oo ) = dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) | 
						
							| 128 | 124 127 | ordthmeo |  |-  ( ( ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V /\ ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) ) | 
						
							| 129 | 110 111 118 128 | mp3an |  |-  F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) | 
						
							| 130 |  | dfii5 |  |-  II = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) | 
						
							| 131 |  | ordtresticc |  |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) | 
						
							| 132 | 2 131 | eqtri |  |-  K = ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) | 
						
							| 133 | 130 132 | oveq12i |  |-  ( II Homeo K ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) | 
						
							| 134 | 129 133 | eleqtrri |  |-  F e. ( II Homeo K ) | 
						
							| 135 | 107 134 | pm3.2i |  |-  ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ F e. ( II Homeo K ) ) |