| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrhmeo.f |  |-  F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) | 
						
							| 2 |  | xrhmeo.g |  |-  G = ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) | 
						
							| 3 |  | xrhmeo.j |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 4 |  | iccssxr |  |-  ( -u 1 [,] 1 ) C_ RR* | 
						
							| 5 |  | xrltso |  |-  < Or RR* | 
						
							| 6 |  | soss |  |-  ( ( -u 1 [,] 1 ) C_ RR* -> ( < Or RR* -> < Or ( -u 1 [,] 1 ) ) ) | 
						
							| 7 | 4 5 6 | mp2 |  |-  < Or ( -u 1 [,] 1 ) | 
						
							| 8 |  | sopo |  |-  ( < Or RR* -> < Po RR* ) | 
						
							| 9 | 5 8 | ax-mp |  |-  < Po RR* | 
						
							| 10 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 11 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 12 |  | 1re |  |-  1 e. RR | 
						
							| 13 | 11 12 | elicc2i |  |-  ( y e. ( -u 1 [,] 1 ) <-> ( y e. RR /\ -u 1 <_ y /\ y <_ 1 ) ) | 
						
							| 14 | 13 | simp1bi |  |-  ( y e. ( -u 1 [,] 1 ) -> y e. RR ) | 
						
							| 15 | 14 | adantr |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y e. RR ) | 
						
							| 16 |  | simpr |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> 0 <_ y ) | 
						
							| 17 | 13 | simp3bi |  |-  ( y e. ( -u 1 [,] 1 ) -> y <_ 1 ) | 
						
							| 18 | 17 | adantr |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y <_ 1 ) | 
						
							| 19 |  | elicc01 |  |-  ( y e. ( 0 [,] 1 ) <-> ( y e. RR /\ 0 <_ y /\ y <_ 1 ) ) | 
						
							| 20 | 15 16 18 19 | syl3anbrc |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y e. ( 0 [,] 1 ) ) | 
						
							| 21 | 1 | iccpnfcnv |  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( v e. ( 0 [,] +oo ) |-> if ( v = +oo , 1 , ( v / ( 1 + v ) ) ) ) ) | 
						
							| 22 | 21 | simpli |  |-  F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) | 
						
							| 23 |  | f1of |  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) ) | 
						
							| 24 | 22 23 | ax-mp |  |-  F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) | 
						
							| 25 | 24 | ffvelcdmi |  |-  ( y e. ( 0 [,] 1 ) -> ( F ` y ) e. ( 0 [,] +oo ) ) | 
						
							| 26 | 20 25 | syl |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> ( F ` y ) e. ( 0 [,] +oo ) ) | 
						
							| 27 | 10 26 | sselid |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> ( F ` y ) e. RR* ) | 
						
							| 28 | 14 | adantr |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> y e. RR ) | 
						
							| 29 | 28 | renegcld |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y e. RR ) | 
						
							| 30 |  | 0re |  |-  0 e. RR | 
						
							| 31 |  | letric |  |-  ( ( 0 e. RR /\ y e. RR ) -> ( 0 <_ y \/ y <_ 0 ) ) | 
						
							| 32 | 30 14 31 | sylancr |  |-  ( y e. ( -u 1 [,] 1 ) -> ( 0 <_ y \/ y <_ 0 ) ) | 
						
							| 33 | 32 | orcanai |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> y <_ 0 ) | 
						
							| 34 | 28 | le0neg1d |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( y <_ 0 <-> 0 <_ -u y ) ) | 
						
							| 35 | 33 34 | mpbid |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> 0 <_ -u y ) | 
						
							| 36 | 13 | simp2bi |  |-  ( y e. ( -u 1 [,] 1 ) -> -u 1 <_ y ) | 
						
							| 37 | 36 | adantr |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u 1 <_ y ) | 
						
							| 38 |  | lenegcon1 |  |-  ( ( 1 e. RR /\ y e. RR ) -> ( -u 1 <_ y <-> -u y <_ 1 ) ) | 
						
							| 39 | 12 28 38 | sylancr |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( -u 1 <_ y <-> -u y <_ 1 ) ) | 
						
							| 40 | 37 39 | mpbid |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y <_ 1 ) | 
						
							| 41 |  | elicc01 |  |-  ( -u y e. ( 0 [,] 1 ) <-> ( -u y e. RR /\ 0 <_ -u y /\ -u y <_ 1 ) ) | 
						
							| 42 | 29 35 40 41 | syl3anbrc |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y e. ( 0 [,] 1 ) ) | 
						
							| 43 | 24 | ffvelcdmi |  |-  ( -u y e. ( 0 [,] 1 ) -> ( F ` -u y ) e. ( 0 [,] +oo ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( F ` -u y ) e. ( 0 [,] +oo ) ) | 
						
							| 45 | 10 44 | sselid |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( F ` -u y ) e. RR* ) | 
						
							| 46 | 45 | xnegcld |  |-  ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -e ( F ` -u y ) e. RR* ) | 
						
							| 47 | 27 46 | ifclda |  |-  ( y e. ( -u 1 [,] 1 ) -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) e. RR* ) | 
						
							| 48 | 2 47 | fmpti |  |-  G : ( -u 1 [,] 1 ) --> RR* | 
						
							| 49 |  | frn |  |-  ( G : ( -u 1 [,] 1 ) --> RR* -> ran G C_ RR* ) | 
						
							| 50 | 48 49 | ax-mp |  |-  ran G C_ RR* | 
						
							| 51 |  | ssabral |  |-  ( RR* C_ { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } <-> A. z e. RR* E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) | 
						
							| 52 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 53 |  | le0neg2 |  |-  ( 1 e. RR -> ( 0 <_ 1 <-> -u 1 <_ 0 ) ) | 
						
							| 54 | 12 53 | ax-mp |  |-  ( 0 <_ 1 <-> -u 1 <_ 0 ) | 
						
							| 55 | 52 54 | mpbi |  |-  -u 1 <_ 0 | 
						
							| 56 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 57 |  | iccss |  |-  ( ( ( -u 1 e. RR /\ 1 e. RR ) /\ ( -u 1 <_ 0 /\ 1 <_ 1 ) ) -> ( 0 [,] 1 ) C_ ( -u 1 [,] 1 ) ) | 
						
							| 58 | 11 12 55 56 57 | mp4an |  |-  ( 0 [,] 1 ) C_ ( -u 1 [,] 1 ) | 
						
							| 59 |  | elxrge0 |  |-  ( z e. ( 0 [,] +oo ) <-> ( z e. RR* /\ 0 <_ z ) ) | 
						
							| 60 |  | f1ocnv |  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> `' F : ( 0 [,] +oo ) -1-1-onto-> ( 0 [,] 1 ) ) | 
						
							| 61 |  | f1of |  |-  ( `' F : ( 0 [,] +oo ) -1-1-onto-> ( 0 [,] 1 ) -> `' F : ( 0 [,] +oo ) --> ( 0 [,] 1 ) ) | 
						
							| 62 | 22 60 61 | mp2b |  |-  `' F : ( 0 [,] +oo ) --> ( 0 [,] 1 ) | 
						
							| 63 | 62 | ffvelcdmi |  |-  ( z e. ( 0 [,] +oo ) -> ( `' F ` z ) e. ( 0 [,] 1 ) ) | 
						
							| 64 | 59 63 | sylbir |  |-  ( ( z e. RR* /\ 0 <_ z ) -> ( `' F ` z ) e. ( 0 [,] 1 ) ) | 
						
							| 65 | 58 64 | sselid |  |-  ( ( z e. RR* /\ 0 <_ z ) -> ( `' F ` z ) e. ( -u 1 [,] 1 ) ) | 
						
							| 66 |  | elicc01 |  |-  ( ( `' F ` z ) e. ( 0 [,] 1 ) <-> ( ( `' F ` z ) e. RR /\ 0 <_ ( `' F ` z ) /\ ( `' F ` z ) <_ 1 ) ) | 
						
							| 67 | 66 | simp2bi |  |-  ( ( `' F ` z ) e. ( 0 [,] 1 ) -> 0 <_ ( `' F ` z ) ) | 
						
							| 68 | 64 67 | syl |  |-  ( ( z e. RR* /\ 0 <_ z ) -> 0 <_ ( `' F ` z ) ) | 
						
							| 69 | 59 | biimpri |  |-  ( ( z e. RR* /\ 0 <_ z ) -> z e. ( 0 [,] +oo ) ) | 
						
							| 70 |  | f1ocnvfv2 |  |-  ( ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ z e. ( 0 [,] +oo ) ) -> ( F ` ( `' F ` z ) ) = z ) | 
						
							| 71 | 22 69 70 | sylancr |  |-  ( ( z e. RR* /\ 0 <_ z ) -> ( F ` ( `' F ` z ) ) = z ) | 
						
							| 72 | 71 | eqcomd |  |-  ( ( z e. RR* /\ 0 <_ z ) -> z = ( F ` ( `' F ` z ) ) ) | 
						
							| 73 |  | breq2 |  |-  ( y = ( `' F ` z ) -> ( 0 <_ y <-> 0 <_ ( `' F ` z ) ) ) | 
						
							| 74 |  | fveq2 |  |-  ( y = ( `' F ` z ) -> ( F ` y ) = ( F ` ( `' F ` z ) ) ) | 
						
							| 75 | 74 | eqeq2d |  |-  ( y = ( `' F ` z ) -> ( z = ( F ` y ) <-> z = ( F ` ( `' F ` z ) ) ) ) | 
						
							| 76 | 73 75 | anbi12d |  |-  ( y = ( `' F ` z ) -> ( ( 0 <_ y /\ z = ( F ` y ) ) <-> ( 0 <_ ( `' F ` z ) /\ z = ( F ` ( `' F ` z ) ) ) ) ) | 
						
							| 77 | 76 | rspcev |  |-  ( ( ( `' F ` z ) e. ( -u 1 [,] 1 ) /\ ( 0 <_ ( `' F ` z ) /\ z = ( F ` ( `' F ` z ) ) ) ) -> E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) ) | 
						
							| 78 | 65 68 72 77 | syl12anc |  |-  ( ( z e. RR* /\ 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) ) | 
						
							| 79 |  | iftrue |  |-  ( 0 <_ y -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = ( F ` y ) ) | 
						
							| 80 | 79 | eqeq2d |  |-  ( 0 <_ y -> ( z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) <-> z = ( F ` y ) ) ) | 
						
							| 81 | 80 | biimpar |  |-  ( ( 0 <_ y /\ z = ( F ` y ) ) -> z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) | 
						
							| 82 | 81 | reximi |  |-  ( E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) | 
						
							| 83 | 78 82 | syl |  |-  ( ( z e. RR* /\ 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) | 
						
							| 84 |  | xnegcl |  |-  ( z e. RR* -> -e z e. RR* ) | 
						
							| 85 | 84 | adantr |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -e z e. RR* ) | 
						
							| 86 |  | 0xr |  |-  0 e. RR* | 
						
							| 87 |  | xrletri |  |-  ( ( 0 e. RR* /\ z e. RR* ) -> ( 0 <_ z \/ z <_ 0 ) ) | 
						
							| 88 | 86 87 | mpan |  |-  ( z e. RR* -> ( 0 <_ z \/ z <_ 0 ) ) | 
						
							| 89 | 88 | ord |  |-  ( z e. RR* -> ( -. 0 <_ z -> z <_ 0 ) ) | 
						
							| 90 |  | xle0neg1 |  |-  ( z e. RR* -> ( z <_ 0 <-> 0 <_ -e z ) ) | 
						
							| 91 | 89 90 | sylibd |  |-  ( z e. RR* -> ( -. 0 <_ z -> 0 <_ -e z ) ) | 
						
							| 92 | 91 | imp |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> 0 <_ -e z ) | 
						
							| 93 |  | elxrge0 |  |-  ( -e z e. ( 0 [,] +oo ) <-> ( -e z e. RR* /\ 0 <_ -e z ) ) | 
						
							| 94 | 85 92 93 | sylanbrc |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -e z e. ( 0 [,] +oo ) ) | 
						
							| 95 | 62 | ffvelcdmi |  |-  ( -e z e. ( 0 [,] +oo ) -> ( `' F ` -e z ) e. ( 0 [,] 1 ) ) | 
						
							| 96 | 94 95 | syl |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. ( 0 [,] 1 ) ) | 
						
							| 97 | 58 96 | sselid |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. ( -u 1 [,] 1 ) ) | 
						
							| 98 |  | iccssre |  |-  ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) | 
						
							| 99 | 11 12 98 | mp2an |  |-  ( -u 1 [,] 1 ) C_ RR | 
						
							| 100 | 99 97 | sselid |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. RR ) | 
						
							| 101 |  | iccneg |  |-  ( ( -u 1 e. RR /\ 1 e. RR /\ ( `' F ` -e z ) e. RR ) -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) | 
						
							| 102 | 11 12 101 | mp3an12 |  |-  ( ( `' F ` -e z ) e. RR -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) | 
						
							| 103 | 100 102 | syl |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) | 
						
							| 104 | 97 103 | mpbid |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) | 
						
							| 105 |  | negneg1e1 |  |-  -u -u 1 = 1 | 
						
							| 106 | 105 | oveq2i |  |-  ( -u 1 [,] -u -u 1 ) = ( -u 1 [,] 1 ) | 
						
							| 107 | 104 106 | eleqtrdi |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -u ( `' F ` -e z ) e. ( -u 1 [,] 1 ) ) | 
						
							| 108 |  | xle0neg2 |  |-  ( z e. RR* -> ( 0 <_ z <-> -e z <_ 0 ) ) | 
						
							| 109 | 108 | notbid |  |-  ( z e. RR* -> ( -. 0 <_ z <-> -. -e z <_ 0 ) ) | 
						
							| 110 | 109 | biimpa |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -. -e z <_ 0 ) | 
						
							| 111 |  | f1ocnvfv2 |  |-  ( ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ -e z e. ( 0 [,] +oo ) ) -> ( F ` ( `' F ` -e z ) ) = -e z ) | 
						
							| 112 | 22 94 111 | sylancr |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` ( `' F ` -e z ) ) = -e z ) | 
						
							| 113 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 114 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 115 |  | neeq2 |  |-  ( x = 0 -> ( 1 =/= x <-> 1 =/= 0 ) ) | 
						
							| 116 | 114 115 | mpbiri |  |-  ( x = 0 -> 1 =/= x ) | 
						
							| 117 | 116 | necomd |  |-  ( x = 0 -> x =/= 1 ) | 
						
							| 118 |  | ifnefalse |  |-  ( x =/= 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) | 
						
							| 119 | 117 118 | syl |  |-  ( x = 0 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) | 
						
							| 120 |  | id |  |-  ( x = 0 -> x = 0 ) | 
						
							| 121 |  | oveq2 |  |-  ( x = 0 -> ( 1 - x ) = ( 1 - 0 ) ) | 
						
							| 122 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 123 | 121 122 | eqtrdi |  |-  ( x = 0 -> ( 1 - x ) = 1 ) | 
						
							| 124 | 120 123 | oveq12d |  |-  ( x = 0 -> ( x / ( 1 - x ) ) = ( 0 / 1 ) ) | 
						
							| 125 |  | ax-1cn |  |-  1 e. CC | 
						
							| 126 | 125 114 | div0i |  |-  ( 0 / 1 ) = 0 | 
						
							| 127 | 124 126 | eqtrdi |  |-  ( x = 0 -> ( x / ( 1 - x ) ) = 0 ) | 
						
							| 128 | 119 127 | eqtrd |  |-  ( x = 0 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = 0 ) | 
						
							| 129 |  | c0ex |  |-  0 e. _V | 
						
							| 130 | 128 1 129 | fvmpt |  |-  ( 0 e. ( 0 [,] 1 ) -> ( F ` 0 ) = 0 ) | 
						
							| 131 | 113 130 | ax-mp |  |-  ( F ` 0 ) = 0 | 
						
							| 132 | 131 | a1i |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` 0 ) = 0 ) | 
						
							| 133 | 112 132 | breq12d |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) <-> -e z <_ 0 ) ) | 
						
							| 134 | 110 133 | mtbird |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -. ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) | 
						
							| 135 |  | eqid |  |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) | 
						
							| 136 | 1 135 | iccpnfhmeo |  |-  ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ F e. ( II Homeo ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) ) | 
						
							| 137 | 136 | simpli |  |-  F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) | 
						
							| 138 |  | iccssxr |  |-  ( 0 [,] 1 ) C_ RR* | 
						
							| 139 | 138 10 | pm3.2i |  |-  ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) | 
						
							| 140 |  | leisorel |  |-  ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) /\ ( ( `' F ` -e z ) e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) | 
						
							| 141 | 137 139 140 | mp3an12 |  |-  ( ( ( `' F ` -e z ) e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) | 
						
							| 142 | 96 113 141 | sylancl |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) | 
						
							| 143 | 134 142 | mtbird |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -. ( `' F ` -e z ) <_ 0 ) | 
						
							| 144 | 100 | le0neg1d |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) <_ 0 <-> 0 <_ -u ( `' F ` -e z ) ) ) | 
						
							| 145 | 143 144 | mtbid |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -. 0 <_ -u ( `' F ` -e z ) ) | 
						
							| 146 |  | unitssre |  |-  ( 0 [,] 1 ) C_ RR | 
						
							| 147 | 146 96 | sselid |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. RR ) | 
						
							| 148 | 147 | recnd |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. CC ) | 
						
							| 149 | 148 | negnegd |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -u -u ( `' F ` -e z ) = ( `' F ` -e z ) ) | 
						
							| 150 | 149 | fveq2d |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` -u -u ( `' F ` -e z ) ) = ( F ` ( `' F ` -e z ) ) ) | 
						
							| 151 | 150 112 | eqtrd |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` -u -u ( `' F ` -e z ) ) = -e z ) | 
						
							| 152 |  | xnegeq |  |-  ( ( F ` -u -u ( `' F ` -e z ) ) = -e z -> -e ( F ` -u -u ( `' F ` -e z ) ) = -e -e z ) | 
						
							| 153 | 151 152 | syl |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -e ( F ` -u -u ( `' F ` -e z ) ) = -e -e z ) | 
						
							| 154 |  | xnegneg |  |-  ( z e. RR* -> -e -e z = z ) | 
						
							| 155 | 154 | adantr |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> -e -e z = z ) | 
						
							| 156 | 153 155 | eqtr2d |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> z = -e ( F ` -u -u ( `' F ` -e z ) ) ) | 
						
							| 157 |  | breq2 |  |-  ( y = -u ( `' F ` -e z ) -> ( 0 <_ y <-> 0 <_ -u ( `' F ` -e z ) ) ) | 
						
							| 158 | 157 | notbid |  |-  ( y = -u ( `' F ` -e z ) -> ( -. 0 <_ y <-> -. 0 <_ -u ( `' F ` -e z ) ) ) | 
						
							| 159 |  | negeq |  |-  ( y = -u ( `' F ` -e z ) -> -u y = -u -u ( `' F ` -e z ) ) | 
						
							| 160 | 159 | fveq2d |  |-  ( y = -u ( `' F ` -e z ) -> ( F ` -u y ) = ( F ` -u -u ( `' F ` -e z ) ) ) | 
						
							| 161 |  | xnegeq |  |-  ( ( F ` -u y ) = ( F ` -u -u ( `' F ` -e z ) ) -> -e ( F ` -u y ) = -e ( F ` -u -u ( `' F ` -e z ) ) ) | 
						
							| 162 | 160 161 | syl |  |-  ( y = -u ( `' F ` -e z ) -> -e ( F ` -u y ) = -e ( F ` -u -u ( `' F ` -e z ) ) ) | 
						
							| 163 | 162 | eqeq2d |  |-  ( y = -u ( `' F ` -e z ) -> ( z = -e ( F ` -u y ) <-> z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) | 
						
							| 164 | 158 163 | anbi12d |  |-  ( y = -u ( `' F ` -e z ) -> ( ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) <-> ( -. 0 <_ -u ( `' F ` -e z ) /\ z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) ) | 
						
							| 165 | 164 | rspcev |  |-  ( ( -u ( `' F ` -e z ) e. ( -u 1 [,] 1 ) /\ ( -. 0 <_ -u ( `' F ` -e z ) /\ z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) -> E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) ) | 
						
							| 166 | 107 145 156 165 | syl12anc |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) ) | 
						
							| 167 |  | iffalse |  |-  ( -. 0 <_ y -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = -e ( F ` -u y ) ) | 
						
							| 168 | 167 | eqeq2d |  |-  ( -. 0 <_ y -> ( z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) <-> z = -e ( F ` -u y ) ) ) | 
						
							| 169 | 168 | biimpar |  |-  ( ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) -> z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) | 
						
							| 170 | 169 | reximi |  |-  ( E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) | 
						
							| 171 | 166 170 | syl |  |-  ( ( z e. RR* /\ -. 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) | 
						
							| 172 | 83 171 | pm2.61dan |  |-  ( z e. RR* -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) | 
						
							| 173 | 51 172 | mprgbir |  |-  RR* C_ { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } | 
						
							| 174 | 2 | rnmpt |  |-  ran G = { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } | 
						
							| 175 | 173 174 | sseqtrri |  |-  RR* C_ ran G | 
						
							| 176 | 50 175 | eqssi |  |-  ran G = RR* | 
						
							| 177 |  | dffo2 |  |-  ( G : ( -u 1 [,] 1 ) -onto-> RR* <-> ( G : ( -u 1 [,] 1 ) --> RR* /\ ran G = RR* ) ) | 
						
							| 178 | 48 176 177 | mpbir2an |  |-  G : ( -u 1 [,] 1 ) -onto-> RR* | 
						
							| 179 |  | breq1 |  |-  ( ( F ` z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) -> ( ( F ` z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) | 
						
							| 180 |  | breq1 |  |-  ( -e ( F ` -u z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) -> ( -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) | 
						
							| 181 |  | simpl3 |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z < w ) | 
						
							| 182 |  | simpl1 |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. ( -u 1 [,] 1 ) ) | 
						
							| 183 |  | simpr |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 <_ z ) | 
						
							| 184 |  | breq2 |  |-  ( y = z -> ( 0 <_ y <-> 0 <_ z ) ) | 
						
							| 185 |  | eleq1w |  |-  ( y = z -> ( y e. ( 0 [,] 1 ) <-> z e. ( 0 [,] 1 ) ) ) | 
						
							| 186 | 184 185 | imbi12d |  |-  ( y = z -> ( ( 0 <_ y -> y e. ( 0 [,] 1 ) ) <-> ( 0 <_ z -> z e. ( 0 [,] 1 ) ) ) ) | 
						
							| 187 | 20 | ex |  |-  ( y e. ( -u 1 [,] 1 ) -> ( 0 <_ y -> y e. ( 0 [,] 1 ) ) ) | 
						
							| 188 | 186 187 | vtoclga |  |-  ( z e. ( -u 1 [,] 1 ) -> ( 0 <_ z -> z e. ( 0 [,] 1 ) ) ) | 
						
							| 189 | 182 183 188 | sylc |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. ( 0 [,] 1 ) ) | 
						
							| 190 |  | simpl2 |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. ( -u 1 [,] 1 ) ) | 
						
							| 191 | 30 | a1i |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 e. RR ) | 
						
							| 192 | 99 182 | sselid |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. RR ) | 
						
							| 193 | 99 190 | sselid |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. RR ) | 
						
							| 194 | 192 193 181 | ltled |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z <_ w ) | 
						
							| 195 | 191 192 193 183 194 | letrd |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 <_ w ) | 
						
							| 196 |  | breq2 |  |-  ( y = w -> ( 0 <_ y <-> 0 <_ w ) ) | 
						
							| 197 |  | eleq1w |  |-  ( y = w -> ( y e. ( 0 [,] 1 ) <-> w e. ( 0 [,] 1 ) ) ) | 
						
							| 198 | 196 197 | imbi12d |  |-  ( y = w -> ( ( 0 <_ y -> y e. ( 0 [,] 1 ) ) <-> ( 0 <_ w -> w e. ( 0 [,] 1 ) ) ) ) | 
						
							| 199 | 198 187 | vtoclga |  |-  ( w e. ( -u 1 [,] 1 ) -> ( 0 <_ w -> w e. ( 0 [,] 1 ) ) ) | 
						
							| 200 | 190 195 199 | sylc |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. ( 0 [,] 1 ) ) | 
						
							| 201 |  | isorel |  |-  ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) | 
						
							| 202 | 137 201 | mpan |  |-  ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) | 
						
							| 203 | 189 200 202 | syl2anc |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) | 
						
							| 204 | 181 203 | mpbid |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( F ` z ) < ( F ` w ) ) | 
						
							| 205 | 195 | iftrued |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) = ( F ` w ) ) | 
						
							| 206 | 204 205 | breqtrrd |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( F ` z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) | 
						
							| 207 |  | breq2 |  |-  ( ( F ` w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) -> ( -e ( F ` -u z ) < ( F ` w ) <-> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) | 
						
							| 208 |  | breq2 |  |-  ( -e ( F ` -u w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) -> ( -e ( F ` -u z ) < -e ( F ` -u w ) <-> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) | 
						
							| 209 |  | simpl1 |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> z e. ( -u 1 [,] 1 ) ) | 
						
							| 210 |  | simpr |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -. 0 <_ z ) | 
						
							| 211 | 184 | notbid |  |-  ( y = z -> ( -. 0 <_ y <-> -. 0 <_ z ) ) | 
						
							| 212 |  | negeq |  |-  ( y = z -> -u y = -u z ) | 
						
							| 213 | 212 | eleq1d |  |-  ( y = z -> ( -u y e. ( 0 [,] 1 ) <-> -u z e. ( 0 [,] 1 ) ) ) | 
						
							| 214 | 211 213 | imbi12d |  |-  ( y = z -> ( ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) <-> ( -. 0 <_ z -> -u z e. ( 0 [,] 1 ) ) ) ) | 
						
							| 215 | 42 | ex |  |-  ( y e. ( -u 1 [,] 1 ) -> ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) ) | 
						
							| 216 | 214 215 | vtoclga |  |-  ( z e. ( -u 1 [,] 1 ) -> ( -. 0 <_ z -> -u z e. ( 0 [,] 1 ) ) ) | 
						
							| 217 | 209 210 216 | sylc |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -u z e. ( 0 [,] 1 ) ) | 
						
							| 218 | 217 | adantr |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -u z e. ( 0 [,] 1 ) ) | 
						
							| 219 | 24 | ffvelcdmi |  |-  ( -u z e. ( 0 [,] 1 ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) | 
						
							| 220 | 218 219 | syl |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) | 
						
							| 221 | 10 220 | sselid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` -u z ) e. RR* ) | 
						
							| 222 | 221 | xnegcld |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) e. RR* ) | 
						
							| 223 | 86 | a1i |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 e. RR* ) | 
						
							| 224 |  | simpll2 |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> w e. ( -u 1 [,] 1 ) ) | 
						
							| 225 |  | simpr |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 <_ w ) | 
						
							| 226 | 224 225 199 | sylc |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> w e. ( 0 [,] 1 ) ) | 
						
							| 227 | 24 | ffvelcdmi |  |-  ( w e. ( 0 [,] 1 ) -> ( F ` w ) e. ( 0 [,] +oo ) ) | 
						
							| 228 | 226 227 | syl |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` w ) e. ( 0 [,] +oo ) ) | 
						
							| 229 | 10 228 | sselid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` w ) e. RR* ) | 
						
							| 230 | 210 | adantr |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -. 0 <_ z ) | 
						
							| 231 |  | simpll1 |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z e. ( -u 1 [,] 1 ) ) | 
						
							| 232 | 99 231 | sselid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z e. RR ) | 
						
							| 233 |  | ltnle |  |-  ( ( z e. RR /\ 0 e. RR ) -> ( z < 0 <-> -. 0 <_ z ) ) | 
						
							| 234 | 232 30 233 | sylancl |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( z < 0 <-> -. 0 <_ z ) ) | 
						
							| 235 | 230 234 | mpbird |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z < 0 ) | 
						
							| 236 | 232 | lt0neg1d |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( z < 0 <-> 0 < -u z ) ) | 
						
							| 237 | 235 236 | mpbid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 < -u z ) | 
						
							| 238 |  | isorel |  |-  ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( 0 e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) | 
						
							| 239 | 137 238 | mpan |  |-  ( ( 0 e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) | 
						
							| 240 | 113 218 239 | sylancr |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) | 
						
							| 241 | 237 240 | mpbid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` 0 ) < ( F ` -u z ) ) | 
						
							| 242 | 131 241 | eqbrtrrid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 < ( F ` -u z ) ) | 
						
							| 243 |  | xlt0neg2 |  |-  ( ( F ` -u z ) e. RR* -> ( 0 < ( F ` -u z ) <-> -e ( F ` -u z ) < 0 ) ) | 
						
							| 244 | 221 243 | syl |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( 0 < ( F ` -u z ) <-> -e ( F ` -u z ) < 0 ) ) | 
						
							| 245 | 242 244 | mpbid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) < 0 ) | 
						
							| 246 |  | elxrge0 |  |-  ( ( F ` w ) e. ( 0 [,] +oo ) <-> ( ( F ` w ) e. RR* /\ 0 <_ ( F ` w ) ) ) | 
						
							| 247 | 246 | simprbi |  |-  ( ( F ` w ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` w ) ) | 
						
							| 248 | 228 247 | syl |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 <_ ( F ` w ) ) | 
						
							| 249 | 222 223 229 245 248 | xrltletrd |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) < ( F ` w ) ) | 
						
							| 250 |  | simpll3 |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z < w ) | 
						
							| 251 |  | simpll1 |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z e. ( -u 1 [,] 1 ) ) | 
						
							| 252 | 99 251 | sselid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z e. RR ) | 
						
							| 253 |  | simpll2 |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> w e. ( -u 1 [,] 1 ) ) | 
						
							| 254 | 99 253 | sselid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> w e. RR ) | 
						
							| 255 | 252 254 | ltnegd |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( z < w <-> -u w < -u z ) ) | 
						
							| 256 | 250 255 | mpbid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u w < -u z ) | 
						
							| 257 |  | simpr |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -. 0 <_ w ) | 
						
							| 258 | 196 | notbid |  |-  ( y = w -> ( -. 0 <_ y <-> -. 0 <_ w ) ) | 
						
							| 259 |  | negeq |  |-  ( y = w -> -u y = -u w ) | 
						
							| 260 | 259 | eleq1d |  |-  ( y = w -> ( -u y e. ( 0 [,] 1 ) <-> -u w e. ( 0 [,] 1 ) ) ) | 
						
							| 261 | 258 260 | imbi12d |  |-  ( y = w -> ( ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) <-> ( -. 0 <_ w -> -u w e. ( 0 [,] 1 ) ) ) ) | 
						
							| 262 | 261 215 | vtoclga |  |-  ( w e. ( -u 1 [,] 1 ) -> ( -. 0 <_ w -> -u w e. ( 0 [,] 1 ) ) ) | 
						
							| 263 | 253 257 262 | sylc |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u w e. ( 0 [,] 1 ) ) | 
						
							| 264 | 217 | adantr |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u z e. ( 0 [,] 1 ) ) | 
						
							| 265 |  | isorel |  |-  ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( -u w e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) | 
						
							| 266 | 137 265 | mpan |  |-  ( ( -u w e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) | 
						
							| 267 | 263 264 266 | syl2anc |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) | 
						
							| 268 | 256 267 | mpbid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) < ( F ` -u z ) ) | 
						
							| 269 | 24 | ffvelcdmi |  |-  ( -u w e. ( 0 [,] 1 ) -> ( F ` -u w ) e. ( 0 [,] +oo ) ) | 
						
							| 270 | 263 269 | syl |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) e. ( 0 [,] +oo ) ) | 
						
							| 271 | 10 270 | sselid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) e. RR* ) | 
						
							| 272 | 264 219 | syl |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) | 
						
							| 273 | 10 272 | sselid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u z ) e. RR* ) | 
						
							| 274 |  | xltneg |  |-  ( ( ( F ` -u w ) e. RR* /\ ( F ` -u z ) e. RR* ) -> ( ( F ` -u w ) < ( F ` -u z ) <-> -e ( F ` -u z ) < -e ( F ` -u w ) ) ) | 
						
							| 275 | 271 273 274 | syl2anc |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( ( F ` -u w ) < ( F ` -u z ) <-> -e ( F ` -u z ) < -e ( F ` -u w ) ) ) | 
						
							| 276 | 268 275 | mpbid |  |-  ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -e ( F ` -u z ) < -e ( F ` -u w ) ) | 
						
							| 277 | 207 208 249 276 | ifbothda |  |-  ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) | 
						
							| 278 | 179 180 206 277 | ifbothda |  |-  ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) -> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) | 
						
							| 279 | 278 | 3expia |  |-  ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( z < w -> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) | 
						
							| 280 |  | fveq2 |  |-  ( y = z -> ( F ` y ) = ( F ` z ) ) | 
						
							| 281 | 212 | fveq2d |  |-  ( y = z -> ( F ` -u y ) = ( F ` -u z ) ) | 
						
							| 282 |  | xnegeq |  |-  ( ( F ` -u y ) = ( F ` -u z ) -> -e ( F ` -u y ) = -e ( F ` -u z ) ) | 
						
							| 283 | 281 282 | syl |  |-  ( y = z -> -e ( F ` -u y ) = -e ( F ` -u z ) ) | 
						
							| 284 | 184 280 283 | ifbieq12d |  |-  ( y = z -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) ) | 
						
							| 285 |  | fvex |  |-  ( F ` z ) e. _V | 
						
							| 286 |  | xnegex |  |-  -e ( F ` -u z ) e. _V | 
						
							| 287 | 285 286 | ifex |  |-  if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) e. _V | 
						
							| 288 | 284 2 287 | fvmpt |  |-  ( z e. ( -u 1 [,] 1 ) -> ( G ` z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) ) | 
						
							| 289 |  | fveq2 |  |-  ( y = w -> ( F ` y ) = ( F ` w ) ) | 
						
							| 290 | 259 | fveq2d |  |-  ( y = w -> ( F ` -u y ) = ( F ` -u w ) ) | 
						
							| 291 |  | xnegeq |  |-  ( ( F ` -u y ) = ( F ` -u w ) -> -e ( F ` -u y ) = -e ( F ` -u w ) ) | 
						
							| 292 | 290 291 | syl |  |-  ( y = w -> -e ( F ` -u y ) = -e ( F ` -u w ) ) | 
						
							| 293 | 196 289 292 | ifbieq12d |  |-  ( y = w -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) | 
						
							| 294 |  | fvex |  |-  ( F ` w ) e. _V | 
						
							| 295 |  | xnegex |  |-  -e ( F ` -u w ) e. _V | 
						
							| 296 | 294 295 | ifex |  |-  if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) e. _V | 
						
							| 297 | 293 2 296 | fvmpt |  |-  ( w e. ( -u 1 [,] 1 ) -> ( G ` w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) | 
						
							| 298 | 288 297 | breqan12d |  |-  ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( ( G ` z ) < ( G ` w ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) | 
						
							| 299 | 279 298 | sylibrd |  |-  ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( z < w -> ( G ` z ) < ( G ` w ) ) ) | 
						
							| 300 | 299 | rgen2 |  |-  A. z e. ( -u 1 [,] 1 ) A. w e. ( -u 1 [,] 1 ) ( z < w -> ( G ` z ) < ( G ` w ) ) | 
						
							| 301 |  | soisoi |  |-  ( ( ( < Or ( -u 1 [,] 1 ) /\ < Po RR* ) /\ ( G : ( -u 1 [,] 1 ) -onto-> RR* /\ A. z e. ( -u 1 [,] 1 ) A. w e. ( -u 1 [,] 1 ) ( z < w -> ( G ` z ) < ( G ` w ) ) ) ) -> G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) ) | 
						
							| 302 | 7 9 178 300 301 | mp4an |  |-  G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) | 
						
							| 303 |  | letsr |  |-  <_ e. TosetRel | 
						
							| 304 | 303 | elexi |  |-  <_ e. _V | 
						
							| 305 | 304 | inex1 |  |-  ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) e. _V | 
						
							| 306 |  | ssid |  |-  RR* C_ RR* | 
						
							| 307 |  | leiso |  |-  ( ( ( -u 1 [,] 1 ) C_ RR* /\ RR* C_ RR* ) -> ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) ) ) | 
						
							| 308 | 4 306 307 | mp2an |  |-  ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) ) | 
						
							| 309 | 302 308 | mpbi |  |-  G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) | 
						
							| 310 |  | isores1 |  |-  ( G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) ) | 
						
							| 311 | 309 310 | mpbi |  |-  G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) | 
						
							| 312 |  | tsrps |  |-  ( <_ e. TosetRel -> <_ e. PosetRel ) | 
						
							| 313 | 303 312 | ax-mp |  |-  <_ e. PosetRel | 
						
							| 314 |  | ledm |  |-  RR* = dom <_ | 
						
							| 315 | 314 | psssdm |  |-  ( ( <_ e. PosetRel /\ ( -u 1 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) = ( -u 1 [,] 1 ) ) | 
						
							| 316 | 313 4 315 | mp2an |  |-  dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) = ( -u 1 [,] 1 ) | 
						
							| 317 | 316 | eqcomi |  |-  ( -u 1 [,] 1 ) = dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) | 
						
							| 318 | 317 314 | ordthmeo |  |-  ( ( ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) e. _V /\ <_ e. TosetRel /\ G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) ) -> G e. ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) ) | 
						
							| 319 | 305 303 311 318 | mp3an |  |-  G e. ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) | 
						
							| 320 |  | eqid |  |-  ( ordTop ` <_ ) = ( ordTop ` <_ ) | 
						
							| 321 | 3 320 | xrrest2 |  |-  ( ( -u 1 [,] 1 ) C_ RR -> ( J |`t ( -u 1 [,] 1 ) ) = ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) ) | 
						
							| 322 | 99 321 | ax-mp |  |-  ( J |`t ( -u 1 [,] 1 ) ) = ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) | 
						
							| 323 |  | ordtresticc |  |-  ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) = ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) | 
						
							| 324 | 322 323 | eqtri |  |-  ( J |`t ( -u 1 [,] 1 ) ) = ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) | 
						
							| 325 | 324 | oveq1i |  |-  ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) = ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) | 
						
							| 326 | 319 325 | eleqtrri |  |-  G e. ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) | 
						
							| 327 | 302 326 | pm3.2i |  |-  ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) /\ G e. ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) ) |