Step |
Hyp |
Ref |
Expression |
1 |
|
xrhmeo.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
2 |
|
xrhmeo.g |
⊢ 𝐺 = ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
3 |
|
xrhmeo.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
4 |
|
iccssxr |
⊢ ( - 1 [,] 1 ) ⊆ ℝ* |
5 |
|
xrltso |
⊢ < Or ℝ* |
6 |
|
soss |
⊢ ( ( - 1 [,] 1 ) ⊆ ℝ* → ( < Or ℝ* → < Or ( - 1 [,] 1 ) ) ) |
7 |
4 5 6
|
mp2 |
⊢ < Or ( - 1 [,] 1 ) |
8 |
|
sopo |
⊢ ( < Or ℝ* → < Po ℝ* ) |
9 |
5 8
|
ax-mp |
⊢ < Po ℝ* |
10 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
11 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
12 |
|
1re |
⊢ 1 ∈ ℝ |
13 |
11 12
|
elicc2i |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) ↔ ( 𝑦 ∈ ℝ ∧ - 1 ≤ 𝑦 ∧ 𝑦 ≤ 1 ) ) |
14 |
13
|
simp1bi |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → 𝑦 ∈ ℝ ) |
15 |
14
|
adantr |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
16 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 0 ≤ 𝑦 ) |
17 |
13
|
simp3bi |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → 𝑦 ≤ 1 ) |
18 |
17
|
adantr |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 𝑦 ≤ 1 ) |
19 |
|
elicc01 |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 ≤ 1 ) ) |
20 |
15 16 18 19
|
syl3anbrc |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 𝑦 ∈ ( 0 [,] 1 ) ) |
21 |
1
|
iccpnfcnv |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ ◡ 𝐹 = ( 𝑣 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑣 = +∞ , 1 , ( 𝑣 / ( 1 + 𝑣 ) ) ) ) ) |
22 |
21
|
simpli |
⊢ 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) |
23 |
|
f1of |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) ) |
24 |
22 23
|
ax-mp |
⊢ 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) |
25 |
24
|
ffvelrni |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
26 |
20 25
|
syl |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
27 |
10 26
|
sselid |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
28 |
14
|
adantr |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
29 |
28
|
renegcld |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 𝑦 ∈ ℝ ) |
30 |
|
0re |
⊢ 0 ∈ ℝ |
31 |
|
letric |
⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 ≤ 𝑦 ∨ 𝑦 ≤ 0 ) ) |
32 |
30 14 31
|
sylancr |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑦 ∨ 𝑦 ≤ 0 ) ) |
33 |
32
|
orcanai |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → 𝑦 ≤ 0 ) |
34 |
28
|
le0neg1d |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( 𝑦 ≤ 0 ↔ 0 ≤ - 𝑦 ) ) |
35 |
33 34
|
mpbid |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → 0 ≤ - 𝑦 ) |
36 |
13
|
simp2bi |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → - 1 ≤ 𝑦 ) |
37 |
36
|
adantr |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 1 ≤ 𝑦 ) |
38 |
|
lenegcon1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( - 1 ≤ 𝑦 ↔ - 𝑦 ≤ 1 ) ) |
39 |
12 28 38
|
sylancr |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( - 1 ≤ 𝑦 ↔ - 𝑦 ≤ 1 ) ) |
40 |
37 39
|
mpbid |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 𝑦 ≤ 1 ) |
41 |
|
elicc01 |
⊢ ( - 𝑦 ∈ ( 0 [,] 1 ) ↔ ( - 𝑦 ∈ ℝ ∧ 0 ≤ - 𝑦 ∧ - 𝑦 ≤ 1 ) ) |
42 |
29 35 40 41
|
syl3anbrc |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 𝑦 ∈ ( 0 [,] 1 ) ) |
43 |
24
|
ffvelrni |
⊢ ( - 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ - 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
44 |
42 43
|
syl |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( 𝐹 ‘ - 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
45 |
10 44
|
sselid |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( 𝐹 ‘ - 𝑦 ) ∈ ℝ* ) |
46 |
45
|
xnegcld |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) ∈ ℝ* ) |
47 |
27 46
|
ifclda |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ∈ ℝ* ) |
48 |
2 47
|
fmpti |
⊢ 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ* |
49 |
|
frn |
⊢ ( 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ* → ran 𝐺 ⊆ ℝ* ) |
50 |
48 49
|
ax-mp |
⊢ ran 𝐺 ⊆ ℝ* |
51 |
|
ssabral |
⊢ ( ℝ* ⊆ { 𝑧 ∣ ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) } ↔ ∀ 𝑧 ∈ ℝ* ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
52 |
|
0le1 |
⊢ 0 ≤ 1 |
53 |
|
le0neg2 |
⊢ ( 1 ∈ ℝ → ( 0 ≤ 1 ↔ - 1 ≤ 0 ) ) |
54 |
12 53
|
ax-mp |
⊢ ( 0 ≤ 1 ↔ - 1 ≤ 0 ) |
55 |
52 54
|
mpbi |
⊢ - 1 ≤ 0 |
56 |
|
1le1 |
⊢ 1 ≤ 1 |
57 |
|
iccss |
⊢ ( ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( - 1 ≤ 0 ∧ 1 ≤ 1 ) ) → ( 0 [,] 1 ) ⊆ ( - 1 [,] 1 ) ) |
58 |
11 12 55 56 57
|
mp4an |
⊢ ( 0 [,] 1 ) ⊆ ( - 1 [,] 1 ) |
59 |
|
elxrge0 |
⊢ ( 𝑧 ∈ ( 0 [,] +∞ ) ↔ ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) ) |
60 |
|
f1ocnv |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → ◡ 𝐹 : ( 0 [,] +∞ ) –1-1-onto→ ( 0 [,] 1 ) ) |
61 |
|
f1of |
⊢ ( ◡ 𝐹 : ( 0 [,] +∞ ) –1-1-onto→ ( 0 [,] 1 ) → ◡ 𝐹 : ( 0 [,] +∞ ) ⟶ ( 0 [,] 1 ) ) |
62 |
22 60 61
|
mp2b |
⊢ ◡ 𝐹 : ( 0 [,] +∞ ) ⟶ ( 0 [,] 1 ) |
63 |
62
|
ffvelrni |
⊢ ( 𝑧 ∈ ( 0 [,] +∞ ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) |
64 |
59 63
|
sylbir |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) |
65 |
58 64
|
sselid |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( - 1 [,] 1 ) ) |
66 |
|
elicc01 |
⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ↔ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≤ 1 ) ) |
67 |
66
|
simp2bi |
⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) → 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) |
68 |
64 67
|
syl |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) |
69 |
59
|
biimpri |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ( 0 [,] +∞ ) ) |
70 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
71 |
22 69 70
|
sylancr |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
72 |
71
|
eqcomd |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → 𝑧 = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
73 |
|
breq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 0 ≤ 𝑦 ↔ 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
74 |
|
fveq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
75 |
74
|
eqeq2d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝑧 = ( 𝐹 ‘ 𝑦 ) ↔ 𝑧 = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
76 |
73 75
|
anbi12d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( ( 0 ≤ 𝑦 ∧ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ↔ ( 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ∧ 𝑧 = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) ) |
77 |
76
|
rspcev |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( - 1 [,] 1 ) ∧ ( 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ∧ 𝑧 = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( 0 ≤ 𝑦 ∧ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ) |
78 |
65 68 72 77
|
syl12anc |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( 0 ≤ 𝑦 ∧ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ) |
79 |
|
iftrue |
⊢ ( 0 ≤ 𝑦 → if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
80 |
79
|
eqeq2d |
⊢ ( 0 ≤ 𝑦 → ( 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ↔ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ) |
81 |
80
|
biimpar |
⊢ ( ( 0 ≤ 𝑦 ∧ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) → 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
82 |
81
|
reximi |
⊢ ( ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( 0 ≤ 𝑦 ∧ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
83 |
78 82
|
syl |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
84 |
|
xnegcl |
⊢ ( 𝑧 ∈ ℝ* → -𝑒 𝑧 ∈ ℝ* ) |
85 |
84
|
adantr |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 𝑧 ∈ ℝ* ) |
86 |
|
0xr |
⊢ 0 ∈ ℝ* |
87 |
|
xrletri |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 0 ≤ 𝑧 ∨ 𝑧 ≤ 0 ) ) |
88 |
86 87
|
mpan |
⊢ ( 𝑧 ∈ ℝ* → ( 0 ≤ 𝑧 ∨ 𝑧 ≤ 0 ) ) |
89 |
88
|
ord |
⊢ ( 𝑧 ∈ ℝ* → ( ¬ 0 ≤ 𝑧 → 𝑧 ≤ 0 ) ) |
90 |
|
xle0neg1 |
⊢ ( 𝑧 ∈ ℝ* → ( 𝑧 ≤ 0 ↔ 0 ≤ -𝑒 𝑧 ) ) |
91 |
89 90
|
sylibd |
⊢ ( 𝑧 ∈ ℝ* → ( ¬ 0 ≤ 𝑧 → 0 ≤ -𝑒 𝑧 ) ) |
92 |
91
|
imp |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → 0 ≤ -𝑒 𝑧 ) |
93 |
|
elxrge0 |
⊢ ( -𝑒 𝑧 ∈ ( 0 [,] +∞ ) ↔ ( -𝑒 𝑧 ∈ ℝ* ∧ 0 ≤ -𝑒 𝑧 ) ) |
94 |
85 92 93
|
sylanbrc |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 𝑧 ∈ ( 0 [,] +∞ ) ) |
95 |
62
|
ffvelrni |
⊢ ( -𝑒 𝑧 ∈ ( 0 [,] +∞ ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) ) |
96 |
94 95
|
syl |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) ) |
97 |
58 96
|
sselid |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ) |
98 |
|
iccssre |
⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 [,] 1 ) ⊆ ℝ ) |
99 |
11 12 98
|
mp2an |
⊢ ( - 1 [,] 1 ) ⊆ ℝ |
100 |
99 97
|
sselid |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ ) |
101 |
|
iccneg |
⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ↔ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) ) |
102 |
11 12 101
|
mp3an12 |
⊢ ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ↔ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) ) |
103 |
100 102
|
syl |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ↔ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) ) |
104 |
97 103
|
mpbid |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) |
105 |
|
negneg1e1 |
⊢ - - 1 = 1 |
106 |
105
|
oveq2i |
⊢ ( - 1 [,] - - 1 ) = ( - 1 [,] 1 ) |
107 |
104 106
|
eleqtrdi |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ) |
108 |
|
xle0neg2 |
⊢ ( 𝑧 ∈ ℝ* → ( 0 ≤ 𝑧 ↔ -𝑒 𝑧 ≤ 0 ) ) |
109 |
108
|
notbid |
⊢ ( 𝑧 ∈ ℝ* → ( ¬ 0 ≤ 𝑧 ↔ ¬ -𝑒 𝑧 ≤ 0 ) ) |
110 |
109
|
biimpa |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ -𝑒 𝑧 ≤ 0 ) |
111 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ -𝑒 𝑧 ∈ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 ) |
112 |
22 94 111
|
sylancr |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 ) |
113 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
114 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
115 |
|
neeq2 |
⊢ ( 𝑥 = 0 → ( 1 ≠ 𝑥 ↔ 1 ≠ 0 ) ) |
116 |
114 115
|
mpbiri |
⊢ ( 𝑥 = 0 → 1 ≠ 𝑥 ) |
117 |
116
|
necomd |
⊢ ( 𝑥 = 0 → 𝑥 ≠ 1 ) |
118 |
|
ifnefalse |
⊢ ( 𝑥 ≠ 1 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 / ( 1 − 𝑥 ) ) ) |
119 |
117 118
|
syl |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 / ( 1 − 𝑥 ) ) ) |
120 |
|
id |
⊢ ( 𝑥 = 0 → 𝑥 = 0 ) |
121 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 1 − 𝑥 ) = ( 1 − 0 ) ) |
122 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
123 |
121 122
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 1 − 𝑥 ) = 1 ) |
124 |
120 123
|
oveq12d |
⊢ ( 𝑥 = 0 → ( 𝑥 / ( 1 − 𝑥 ) ) = ( 0 / 1 ) ) |
125 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
126 |
125 114
|
div0i |
⊢ ( 0 / 1 ) = 0 |
127 |
124 126
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝑥 / ( 1 − 𝑥 ) ) = 0 ) |
128 |
119 127
|
eqtrd |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = 0 ) |
129 |
|
c0ex |
⊢ 0 ∈ V |
130 |
128 1 129
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 0 ) = 0 ) |
131 |
113 130
|
ax-mp |
⊢ ( 𝐹 ‘ 0 ) = 0 |
132 |
131
|
a1i |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ 0 ) = 0 ) |
133 |
112 132
|
breq12d |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ↔ -𝑒 𝑧 ≤ 0 ) ) |
134 |
110 133
|
mtbird |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) |
135 |
|
eqid |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
136 |
1 135
|
iccpnfhmeo |
⊢ ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ 𝐹 ∈ ( II Homeo ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) ) |
137 |
136
|
simpli |
⊢ 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |
138 |
|
iccssxr |
⊢ ( 0 [,] 1 ) ⊆ ℝ* |
139 |
138 10
|
pm3.2i |
⊢ ( ( 0 [,] 1 ) ⊆ ℝ* ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) |
140 |
|
leisorel |
⊢ ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( ( 0 [,] 1 ) ⊆ ℝ* ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) ∧ ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) ) |
141 |
137 139 140
|
mp3an12 |
⊢ ( ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) ) |
142 |
96 113 141
|
sylancl |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) ) |
143 |
134 142
|
mtbird |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ) |
144 |
100
|
le0neg1d |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
145 |
143 144
|
mtbid |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) |
146 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
147 |
146 96
|
sselid |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ ) |
148 |
147
|
recnd |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ℂ ) |
149 |
148
|
negnegd |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) = ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) |
150 |
149
|
fveq2d |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
151 |
150 112
|
eqtrd |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 ) |
152 |
|
xnegeq |
⊢ ( ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 → -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 -𝑒 𝑧 ) |
153 |
151 152
|
syl |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 -𝑒 𝑧 ) |
154 |
|
xnegneg |
⊢ ( 𝑧 ∈ ℝ* → -𝑒 -𝑒 𝑧 = 𝑧 ) |
155 |
154
|
adantr |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 -𝑒 𝑧 = 𝑧 ) |
156 |
153 155
|
eqtr2d |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → 𝑧 = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
157 |
|
breq2 |
⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → ( 0 ≤ 𝑦 ↔ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
158 |
157
|
notbid |
⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → ( ¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
159 |
|
negeq |
⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → - 𝑦 = - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) |
160 |
159
|
fveq2d |
⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
161 |
|
xnegeq |
⊢ ( ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
162 |
160 161
|
syl |
⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
163 |
162
|
eqeq2d |
⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → ( 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ↔ 𝑧 = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) ) |
164 |
158 163
|
anbi12d |
⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → ( ( ¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ↔ ( ¬ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) ) ) |
165 |
164
|
rspcev |
⊢ ( ( - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ∧ ( ¬ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( ¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
166 |
107 145 156 165
|
syl12anc |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( ¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
167 |
|
iffalse |
⊢ ( ¬ 0 ≤ 𝑦 → if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) |
168 |
167
|
eqeq2d |
⊢ ( ¬ 0 ≤ 𝑦 → ( 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ↔ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
169 |
168
|
biimpar |
⊢ ( ( ¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) → 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
170 |
169
|
reximi |
⊢ ( ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( ¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
171 |
166 170
|
syl |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
172 |
83 171
|
pm2.61dan |
⊢ ( 𝑧 ∈ ℝ* → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
173 |
51 172
|
mprgbir |
⊢ ℝ* ⊆ { 𝑧 ∣ ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) } |
174 |
2
|
rnmpt |
⊢ ran 𝐺 = { 𝑧 ∣ ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) } |
175 |
173 174
|
sseqtrri |
⊢ ℝ* ⊆ ran 𝐺 |
176 |
50 175
|
eqssi |
⊢ ran 𝐺 = ℝ* |
177 |
|
dffo2 |
⊢ ( 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ* ↔ ( 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ* ∧ ran 𝐺 = ℝ* ) ) |
178 |
48 176 177
|
mpbir2an |
⊢ 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ* |
179 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑧 ) = if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) → ( ( 𝐹 ‘ 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ↔ if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) |
180 |
|
breq1 |
⊢ ( -𝑒 ( 𝐹 ‘ - 𝑧 ) = if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) → ( -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ↔ if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) |
181 |
|
simpl3 |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 < 𝑤 ) |
182 |
|
simpl1 |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ( - 1 [,] 1 ) ) |
183 |
|
simpr |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 0 ≤ 𝑧 ) |
184 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 0 ≤ 𝑦 ↔ 0 ≤ 𝑧 ) ) |
185 |
|
eleq1w |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 0 [,] 1 ) ↔ 𝑧 ∈ ( 0 [,] 1 ) ) ) |
186 |
184 185
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 0 ≤ 𝑦 → 𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( 0 ≤ 𝑧 → 𝑧 ∈ ( 0 [,] 1 ) ) ) ) |
187 |
20
|
ex |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑦 → 𝑦 ∈ ( 0 [,] 1 ) ) ) |
188 |
186 187
|
vtoclga |
⊢ ( 𝑧 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑧 → 𝑧 ∈ ( 0 [,] 1 ) ) ) |
189 |
182 183 188
|
sylc |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ( 0 [,] 1 ) ) |
190 |
|
simpl2 |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑤 ∈ ( - 1 [,] 1 ) ) |
191 |
30
|
a1i |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 0 ∈ ℝ ) |
192 |
99 182
|
sselid |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ℝ ) |
193 |
99 190
|
sselid |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑤 ∈ ℝ ) |
194 |
192 193 181
|
ltled |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ≤ 𝑤 ) |
195 |
191 192 193 183 194
|
letrd |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 0 ≤ 𝑤 ) |
196 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 0 ≤ 𝑦 ↔ 0 ≤ 𝑤 ) ) |
197 |
|
eleq1w |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ ( 0 [,] 1 ) ↔ 𝑤 ∈ ( 0 [,] 1 ) ) ) |
198 |
196 197
|
imbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( 0 ≤ 𝑦 → 𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( 0 ≤ 𝑤 → 𝑤 ∈ ( 0 [,] 1 ) ) ) ) |
199 |
198 187
|
vtoclga |
⊢ ( 𝑤 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑤 → 𝑤 ∈ ( 0 [,] 1 ) ) ) |
200 |
190 195 199
|
sylc |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑤 ∈ ( 0 [,] 1 ) ) |
201 |
|
isorel |
⊢ ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ) → ( 𝑧 < 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) |
202 |
137 201
|
mpan |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) → ( 𝑧 < 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) |
203 |
189 200 202
|
syl2anc |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → ( 𝑧 < 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) |
204 |
181 203
|
mpbid |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) |
205 |
195
|
iftrued |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) = ( 𝐹 ‘ 𝑤 ) ) |
206 |
204 205
|
breqtrrd |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → ( 𝐹 ‘ 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
207 |
|
breq2 |
⊢ ( ( 𝐹 ‘ 𝑤 ) = if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) → ( -𝑒 ( 𝐹 ‘ - 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) |
208 |
|
breq2 |
⊢ ( -𝑒 ( 𝐹 ‘ - 𝑤 ) = if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) → ( -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) |
209 |
|
simpl1 |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → 𝑧 ∈ ( - 1 [,] 1 ) ) |
210 |
|
simpr |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → ¬ 0 ≤ 𝑧 ) |
211 |
184
|
notbid |
⊢ ( 𝑦 = 𝑧 → ( ¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑧 ) ) |
212 |
|
negeq |
⊢ ( 𝑦 = 𝑧 → - 𝑦 = - 𝑧 ) |
213 |
212
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( - 𝑦 ∈ ( 0 [,] 1 ) ↔ - 𝑧 ∈ ( 0 [,] 1 ) ) ) |
214 |
211 213
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ¬ 0 ≤ 𝑦 → - 𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( ¬ 0 ≤ 𝑧 → - 𝑧 ∈ ( 0 [,] 1 ) ) ) ) |
215 |
42
|
ex |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → ( ¬ 0 ≤ 𝑦 → - 𝑦 ∈ ( 0 [,] 1 ) ) ) |
216 |
214 215
|
vtoclga |
⊢ ( 𝑧 ∈ ( - 1 [,] 1 ) → ( ¬ 0 ≤ 𝑧 → - 𝑧 ∈ ( 0 [,] 1 ) ) ) |
217 |
209 210 216
|
sylc |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → - 𝑧 ∈ ( 0 [,] 1 ) ) |
218 |
217
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → - 𝑧 ∈ ( 0 [,] 1 ) ) |
219 |
24
|
ffvelrni |
⊢ ( - 𝑧 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
220 |
218 219
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
221 |
10 220
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* ) |
222 |
221
|
xnegcld |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* ) |
223 |
86
|
a1i |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 ∈ ℝ* ) |
224 |
|
simpll2 |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑤 ∈ ( - 1 [,] 1 ) ) |
225 |
|
simpr |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 ≤ 𝑤 ) |
226 |
224 225 199
|
sylc |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑤 ∈ ( 0 [,] 1 ) ) |
227 |
24
|
ffvelrni |
⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
228 |
226 227
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
229 |
10 228
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ* ) |
230 |
210
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ¬ 0 ≤ 𝑧 ) |
231 |
|
simpll1 |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑧 ∈ ( - 1 [,] 1 ) ) |
232 |
99 231
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑧 ∈ ℝ ) |
233 |
|
ltnle |
⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑧 < 0 ↔ ¬ 0 ≤ 𝑧 ) ) |
234 |
232 30 233
|
sylancl |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝑧 < 0 ↔ ¬ 0 ≤ 𝑧 ) ) |
235 |
230 234
|
mpbird |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑧 < 0 ) |
236 |
232
|
lt0neg1d |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝑧 < 0 ↔ 0 < - 𝑧 ) ) |
237 |
235 236
|
mpbid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 < - 𝑧 ) |
238 |
|
isorel |
⊢ ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( 0 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) ) → ( 0 < - 𝑧 ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) ) |
239 |
137 238
|
mpan |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) → ( 0 < - 𝑧 ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) ) |
240 |
113 218 239
|
sylancr |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 0 < - 𝑧 ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) ) |
241 |
237 240
|
mpbid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) |
242 |
131 241
|
eqbrtrrid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 < ( 𝐹 ‘ - 𝑧 ) ) |
243 |
|
xlt0neg2 |
⊢ ( ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* → ( 0 < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < 0 ) ) |
244 |
221 243
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 0 < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < 0 ) ) |
245 |
242 244
|
mpbid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < 0 ) |
246 |
|
elxrge0 |
⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
247 |
246
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝑤 ) ) |
248 |
228 247
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 ≤ ( 𝐹 ‘ 𝑤 ) ) |
249 |
222 223 229 245 248
|
xrltletrd |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) |
250 |
|
simpll3 |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑧 < 𝑤 ) |
251 |
|
simpll1 |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑧 ∈ ( - 1 [,] 1 ) ) |
252 |
99 251
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑧 ∈ ℝ ) |
253 |
|
simpll2 |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑤 ∈ ( - 1 [,] 1 ) ) |
254 |
99 253
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑤 ∈ ℝ ) |
255 |
252 254
|
ltnegd |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝑧 < 𝑤 ↔ - 𝑤 < - 𝑧 ) ) |
256 |
250 255
|
mpbid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → - 𝑤 < - 𝑧 ) |
257 |
|
simpr |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ¬ 0 ≤ 𝑤 ) |
258 |
196
|
notbid |
⊢ ( 𝑦 = 𝑤 → ( ¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑤 ) ) |
259 |
|
negeq |
⊢ ( 𝑦 = 𝑤 → - 𝑦 = - 𝑤 ) |
260 |
259
|
eleq1d |
⊢ ( 𝑦 = 𝑤 → ( - 𝑦 ∈ ( 0 [,] 1 ) ↔ - 𝑤 ∈ ( 0 [,] 1 ) ) ) |
261 |
258 260
|
imbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( ¬ 0 ≤ 𝑦 → - 𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( ¬ 0 ≤ 𝑤 → - 𝑤 ∈ ( 0 [,] 1 ) ) ) ) |
262 |
261 215
|
vtoclga |
⊢ ( 𝑤 ∈ ( - 1 [,] 1 ) → ( ¬ 0 ≤ 𝑤 → - 𝑤 ∈ ( 0 [,] 1 ) ) ) |
263 |
253 257 262
|
sylc |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → - 𝑤 ∈ ( 0 [,] 1 ) ) |
264 |
217
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → - 𝑧 ∈ ( 0 [,] 1 ) ) |
265 |
|
isorel |
⊢ ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( - 𝑤 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) ) → ( - 𝑤 < - 𝑧 ↔ ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) ) |
266 |
137 265
|
mpan |
⊢ ( ( - 𝑤 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) → ( - 𝑤 < - 𝑧 ↔ ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) ) |
267 |
263 264 266
|
syl2anc |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( - 𝑤 < - 𝑧 ↔ ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) ) |
268 |
256 267
|
mpbid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) |
269 |
24
|
ffvelrni |
⊢ ( - 𝑤 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ - 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
270 |
263 269
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
271 |
10 270
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑤 ) ∈ ℝ* ) |
272 |
264 219
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
273 |
10 272
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* ) |
274 |
|
xltneg |
⊢ ( ( ( 𝐹 ‘ - 𝑤 ) ∈ ℝ* ∧ ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* ) → ( ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
275 |
271 273 274
|
syl2anc |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
276 |
268 275
|
mpbid |
⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ) |
277 |
207 208 249 276
|
ifbothda |
⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
278 |
179 180 206 277
|
ifbothda |
⊢ ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) → if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
279 |
278
|
3expia |
⊢ ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ) → ( 𝑧 < 𝑤 → if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) |
280 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
281 |
212
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑧 ) ) |
282 |
|
xnegeq |
⊢ ( ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑧 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑧 ) ) |
283 |
281 282
|
syl |
⊢ ( 𝑦 = 𝑧 → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑧 ) ) |
284 |
184 280 283
|
ifbieq12d |
⊢ ( 𝑦 = 𝑧 → if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) ) |
285 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
286 |
|
xnegex |
⊢ -𝑒 ( 𝐹 ‘ - 𝑧 ) ∈ V |
287 |
285 286
|
ifex |
⊢ if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) ∈ V |
288 |
284 2 287
|
fvmpt |
⊢ ( 𝑧 ∈ ( - 1 [,] 1 ) → ( 𝐺 ‘ 𝑧 ) = if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) ) |
289 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
290 |
259
|
fveq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑤 ) ) |
291 |
|
xnegeq |
⊢ ( ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑤 ) ) |
292 |
290 291
|
syl |
⊢ ( 𝑦 = 𝑤 → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑤 ) ) |
293 |
196 289 292
|
ifbieq12d |
⊢ ( 𝑦 = 𝑤 → if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
294 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑤 ) ∈ V |
295 |
|
xnegex |
⊢ -𝑒 ( 𝐹 ‘ - 𝑤 ) ∈ V |
296 |
294 295
|
ifex |
⊢ if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ∈ V |
297 |
293 2 296
|
fvmpt |
⊢ ( 𝑤 ∈ ( - 1 [,] 1 ) → ( 𝐺 ‘ 𝑤 ) = if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
298 |
288 297
|
breqan12d |
⊢ ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ) → ( ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑤 ) ↔ if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) |
299 |
279 298
|
sylibrd |
⊢ ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ) → ( 𝑧 < 𝑤 → ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑤 ) ) ) |
300 |
299
|
rgen2 |
⊢ ∀ 𝑧 ∈ ( - 1 [,] 1 ) ∀ 𝑤 ∈ ( - 1 [,] 1 ) ( 𝑧 < 𝑤 → ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑤 ) ) |
301 |
|
soisoi |
⊢ ( ( ( < Or ( - 1 [,] 1 ) ∧ < Po ℝ* ) ∧ ( 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ* ∧ ∀ 𝑧 ∈ ( - 1 [,] 1 ) ∀ 𝑤 ∈ ( - 1 [,] 1 ) ( 𝑧 < 𝑤 → ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑤 ) ) ) ) → 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ) |
302 |
7 9 178 300 301
|
mp4an |
⊢ 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) |
303 |
|
letsr |
⊢ ≤ ∈ TosetRel |
304 |
303
|
elexi |
⊢ ≤ ∈ V |
305 |
304
|
inex1 |
⊢ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ∈ V |
306 |
|
ssid |
⊢ ℝ* ⊆ ℝ* |
307 |
|
leiso |
⊢ ( ( ( - 1 [,] 1 ) ⊆ ℝ* ∧ ℝ* ⊆ ℝ* ) → ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ↔ 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ) ) |
308 |
4 306 307
|
mp2an |
⊢ ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ↔ 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ) |
309 |
302 308
|
mpbi |
⊢ 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) |
310 |
|
isores1 |
⊢ ( 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ↔ 𝐺 Isom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ) |
311 |
309 310
|
mpbi |
⊢ 𝐺 Isom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) , ≤ ( ( - 1 [,] 1 ) , ℝ* ) |
312 |
|
tsrps |
⊢ ( ≤ ∈ TosetRel → ≤ ∈ PosetRel ) |
313 |
303 312
|
ax-mp |
⊢ ≤ ∈ PosetRel |
314 |
|
ledm |
⊢ ℝ* = dom ≤ |
315 |
314
|
psssdm |
⊢ ( ( ≤ ∈ PosetRel ∧ ( - 1 [,] 1 ) ⊆ ℝ* ) → dom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) = ( - 1 [,] 1 ) ) |
316 |
313 4 315
|
mp2an |
⊢ dom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) = ( - 1 [,] 1 ) |
317 |
316
|
eqcomi |
⊢ ( - 1 [,] 1 ) = dom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) |
318 |
317 314
|
ordthmeo |
⊢ ( ( ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ∈ V ∧ ≤ ∈ TosetRel ∧ 𝐺 Isom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ) → 𝐺 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ≤ ) ) ) |
319 |
305 303 311 318
|
mp3an |
⊢ 𝐺 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ≤ ) ) |
320 |
|
eqid |
⊢ ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ ) |
321 |
3 320
|
xrrest2 |
⊢ ( ( - 1 [,] 1 ) ⊆ ℝ → ( 𝐽 ↾t ( - 1 [,] 1 ) ) = ( ( ordTop ‘ ≤ ) ↾t ( - 1 [,] 1 ) ) ) |
322 |
99 321
|
ax-mp |
⊢ ( 𝐽 ↾t ( - 1 [,] 1 ) ) = ( ( ordTop ‘ ≤ ) ↾t ( - 1 [,] 1 ) ) |
323 |
|
ordtresticc |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( - 1 [,] 1 ) ) = ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) |
324 |
322 323
|
eqtri |
⊢ ( 𝐽 ↾t ( - 1 [,] 1 ) ) = ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) |
325 |
324
|
oveq1i |
⊢ ( ( 𝐽 ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) = ( ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ≤ ) ) |
326 |
319 325
|
eleqtrri |
⊢ 𝐺 ∈ ( ( 𝐽 ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) |
327 |
302 326
|
pm3.2i |
⊢ ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ∧ 𝐺 ∈ ( ( 𝐽 ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) ) |