| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrhmeo.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) | 
						
							| 2 |  | xrhmeo.g | ⊢ 𝐺  =  ( 𝑦  ∈  ( - 1 [,] 1 )  ↦  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 3 |  | xrhmeo.j | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 4 |  | iccssxr | ⊢ ( - 1 [,] 1 )  ⊆  ℝ* | 
						
							| 5 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 6 |  | soss | ⊢ ( ( - 1 [,] 1 )  ⊆  ℝ*  →  (  <   Or  ℝ*  →   <   Or  ( - 1 [,] 1 ) ) ) | 
						
							| 7 | 4 5 6 | mp2 | ⊢  <   Or  ( - 1 [,] 1 ) | 
						
							| 8 |  | sopo | ⊢ (  <   Or  ℝ*  →   <   Po  ℝ* ) | 
						
							| 9 | 5 8 | ax-mp | ⊢  <   Po  ℝ* | 
						
							| 10 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 11 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 12 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 13 | 11 12 | elicc2i | ⊢ ( 𝑦  ∈  ( - 1 [,] 1 )  ↔  ( 𝑦  ∈  ℝ  ∧  - 1  ≤  𝑦  ∧  𝑦  ≤  1 ) ) | 
						
							| 14 | 13 | simp1bi | ⊢ ( 𝑦  ∈  ( - 1 [,] 1 )  →  𝑦  ∈  ℝ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  0  ≤  𝑦 )  →  𝑦  ∈  ℝ ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  0  ≤  𝑦 )  →  0  ≤  𝑦 ) | 
						
							| 17 | 13 | simp3bi | ⊢ ( 𝑦  ∈  ( - 1 [,] 1 )  →  𝑦  ≤  1 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  0  ≤  𝑦 )  →  𝑦  ≤  1 ) | 
						
							| 19 |  | elicc01 | ⊢ ( 𝑦  ∈  ( 0 [,] 1 )  ↔  ( 𝑦  ∈  ℝ  ∧  0  ≤  𝑦  ∧  𝑦  ≤  1 ) ) | 
						
							| 20 | 15 16 18 19 | syl3anbrc | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  0  ≤  𝑦 )  →  𝑦  ∈  ( 0 [,] 1 ) ) | 
						
							| 21 | 1 | iccpnfcnv | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  ∧  ◡ 𝐹  =  ( 𝑣  ∈  ( 0 [,] +∞ )  ↦  if ( 𝑣  =  +∞ ,  1 ,  ( 𝑣  /  ( 1  +  𝑣 ) ) ) ) ) | 
						
							| 22 | 21 | simpli | ⊢ 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) | 
						
							| 23 |  | f1of | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  →  𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) | 
						
							| 25 | 24 | ffvelcdmi | ⊢ ( 𝑦  ∈  ( 0 [,] 1 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 26 | 20 25 | syl | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  0  ≤  𝑦 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 27 | 10 26 | sselid | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  0  ≤  𝑦 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 28 | 14 | adantr | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  𝑦  ∈  ℝ ) | 
						
							| 29 | 28 | renegcld | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  - 𝑦  ∈  ℝ ) | 
						
							| 30 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 31 |  | letric | ⊢ ( ( 0  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 0  ≤  𝑦  ∨  𝑦  ≤  0 ) ) | 
						
							| 32 | 30 14 31 | sylancr | ⊢ ( 𝑦  ∈  ( - 1 [,] 1 )  →  ( 0  ≤  𝑦  ∨  𝑦  ≤  0 ) ) | 
						
							| 33 | 32 | orcanai | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  𝑦  ≤  0 ) | 
						
							| 34 | 28 | le0neg1d | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  ( 𝑦  ≤  0  ↔  0  ≤  - 𝑦 ) ) | 
						
							| 35 | 33 34 | mpbid | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  0  ≤  - 𝑦 ) | 
						
							| 36 | 13 | simp2bi | ⊢ ( 𝑦  ∈  ( - 1 [,] 1 )  →  - 1  ≤  𝑦 ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  - 1  ≤  𝑦 ) | 
						
							| 38 |  | lenegcon1 | ⊢ ( ( 1  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( - 1  ≤  𝑦  ↔  - 𝑦  ≤  1 ) ) | 
						
							| 39 | 12 28 38 | sylancr | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  ( - 1  ≤  𝑦  ↔  - 𝑦  ≤  1 ) ) | 
						
							| 40 | 37 39 | mpbid | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  - 𝑦  ≤  1 ) | 
						
							| 41 |  | elicc01 | ⊢ ( - 𝑦  ∈  ( 0 [,] 1 )  ↔  ( - 𝑦  ∈  ℝ  ∧  0  ≤  - 𝑦  ∧  - 𝑦  ≤  1 ) ) | 
						
							| 42 | 29 35 40 41 | syl3anbrc | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  - 𝑦  ∈  ( 0 [,] 1 ) ) | 
						
							| 43 | 24 | ffvelcdmi | ⊢ ( - 𝑦  ∈  ( 0 [,] 1 )  →  ( 𝐹 ‘ - 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  ( 𝐹 ‘ - 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 45 | 10 44 | sselid | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  ( 𝐹 ‘ - 𝑦 )  ∈  ℝ* ) | 
						
							| 46 | 45 | xnegcld | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ∧  ¬  0  ≤  𝑦 )  →  -𝑒 ( 𝐹 ‘ - 𝑦 )  ∈  ℝ* ) | 
						
							| 47 | 27 46 | ifclda | ⊢ ( 𝑦  ∈  ( - 1 [,] 1 )  →  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) )  ∈  ℝ* ) | 
						
							| 48 | 2 47 | fmpti | ⊢ 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ* | 
						
							| 49 |  | frn | ⊢ ( 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ*  →  ran  𝐺  ⊆  ℝ* ) | 
						
							| 50 | 48 49 | ax-mp | ⊢ ran  𝐺  ⊆  ℝ* | 
						
							| 51 |  | ssabral | ⊢ ( ℝ*  ⊆  { 𝑧  ∣  ∃ 𝑦  ∈  ( - 1 [,] 1 ) 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) }  ↔  ∀ 𝑧  ∈  ℝ* ∃ 𝑦  ∈  ( - 1 [,] 1 ) 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 52 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 53 |  | le0neg2 | ⊢ ( 1  ∈  ℝ  →  ( 0  ≤  1  ↔  - 1  ≤  0 ) ) | 
						
							| 54 | 12 53 | ax-mp | ⊢ ( 0  ≤  1  ↔  - 1  ≤  0 ) | 
						
							| 55 | 52 54 | mpbi | ⊢ - 1  ≤  0 | 
						
							| 56 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 57 |  | iccss | ⊢ ( ( ( - 1  ∈  ℝ  ∧  1  ∈  ℝ )  ∧  ( - 1  ≤  0  ∧  1  ≤  1 ) )  →  ( 0 [,] 1 )  ⊆  ( - 1 [,] 1 ) ) | 
						
							| 58 | 11 12 55 56 57 | mp4an | ⊢ ( 0 [,] 1 )  ⊆  ( - 1 [,] 1 ) | 
						
							| 59 |  | elxrge0 | ⊢ ( 𝑧  ∈  ( 0 [,] +∞ )  ↔  ( 𝑧  ∈  ℝ*  ∧  0  ≤  𝑧 ) ) | 
						
							| 60 |  | f1ocnv | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  →  ◡ 𝐹 : ( 0 [,] +∞ ) –1-1-onto→ ( 0 [,] 1 ) ) | 
						
							| 61 |  | f1of | ⊢ ( ◡ 𝐹 : ( 0 [,] +∞ ) –1-1-onto→ ( 0 [,] 1 )  →  ◡ 𝐹 : ( 0 [,] +∞ ) ⟶ ( 0 [,] 1 ) ) | 
						
							| 62 | 22 60 61 | mp2b | ⊢ ◡ 𝐹 : ( 0 [,] +∞ ) ⟶ ( 0 [,] 1 ) | 
						
							| 63 | 62 | ffvelcdmi | ⊢ ( 𝑧  ∈  ( 0 [,] +∞ )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 64 | 59 63 | sylbir | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  0  ≤  𝑧 )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 65 | 58 64 | sselid | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  0  ≤  𝑧 )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( - 1 [,] 1 ) ) | 
						
							| 66 |  | elicc01 | ⊢ ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( 0 [,] 1 )  ↔  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  ℝ  ∧  0  ≤  ( ◡ 𝐹 ‘ 𝑧 )  ∧  ( ◡ 𝐹 ‘ 𝑧 )  ≤  1 ) ) | 
						
							| 67 | 66 | simp2bi | ⊢ ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( 0 [,] 1 )  →  0  ≤  ( ◡ 𝐹 ‘ 𝑧 ) ) | 
						
							| 68 | 64 67 | syl | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  0  ≤  𝑧 )  →  0  ≤  ( ◡ 𝐹 ‘ 𝑧 ) ) | 
						
							| 69 | 59 | biimpri | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  0  ≤  𝑧 )  →  𝑧  ∈  ( 0 [,] +∞ ) ) | 
						
							| 70 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  ∧  𝑧  ∈  ( 0 [,] +∞ ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  =  𝑧 ) | 
						
							| 71 | 22 69 70 | sylancr | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  0  ≤  𝑧 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  =  𝑧 ) | 
						
							| 72 | 71 | eqcomd | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  0  ≤  𝑧 )  →  𝑧  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 73 |  | breq2 | ⊢ ( 𝑦  =  ( ◡ 𝐹 ‘ 𝑧 )  →  ( 0  ≤  𝑦  ↔  0  ≤  ( ◡ 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 74 |  | fveq2 | ⊢ ( 𝑦  =  ( ◡ 𝐹 ‘ 𝑧 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 75 | 74 | eqeq2d | ⊢ ( 𝑦  =  ( ◡ 𝐹 ‘ 𝑧 )  →  ( 𝑧  =  ( 𝐹 ‘ 𝑦 )  ↔  𝑧  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 76 | 73 75 | anbi12d | ⊢ ( 𝑦  =  ( ◡ 𝐹 ‘ 𝑧 )  →  ( ( 0  ≤  𝑦  ∧  𝑧  =  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 0  ≤  ( ◡ 𝐹 ‘ 𝑧 )  ∧  𝑧  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) ) | 
						
							| 77 | 76 | rspcev | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( - 1 [,] 1 )  ∧  ( 0  ≤  ( ◡ 𝐹 ‘ 𝑧 )  ∧  𝑧  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) )  →  ∃ 𝑦  ∈  ( - 1 [,] 1 ) ( 0  ≤  𝑦  ∧  𝑧  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 78 | 65 68 72 77 | syl12anc | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  0  ≤  𝑧 )  →  ∃ 𝑦  ∈  ( - 1 [,] 1 ) ( 0  ≤  𝑦  ∧  𝑧  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 79 |  | iftrue | ⊢ ( 0  ≤  𝑦  →  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 80 | 79 | eqeq2d | ⊢ ( 0  ≤  𝑦  →  ( 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) )  ↔  𝑧  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 81 | 80 | biimpar | ⊢ ( ( 0  ≤  𝑦  ∧  𝑧  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 82 | 81 | reximi | ⊢ ( ∃ 𝑦  ∈  ( - 1 [,] 1 ) ( 0  ≤  𝑦  ∧  𝑧  =  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑦  ∈  ( - 1 [,] 1 ) 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 83 | 78 82 | syl | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  0  ≤  𝑧 )  →  ∃ 𝑦  ∈  ( - 1 [,] 1 ) 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 84 |  | xnegcl | ⊢ ( 𝑧  ∈  ℝ*  →  -𝑒 𝑧  ∈  ℝ* ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  -𝑒 𝑧  ∈  ℝ* ) | 
						
							| 86 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 87 |  | xrletri | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑧  ∈  ℝ* )  →  ( 0  ≤  𝑧  ∨  𝑧  ≤  0 ) ) | 
						
							| 88 | 86 87 | mpan | ⊢ ( 𝑧  ∈  ℝ*  →  ( 0  ≤  𝑧  ∨  𝑧  ≤  0 ) ) | 
						
							| 89 | 88 | ord | ⊢ ( 𝑧  ∈  ℝ*  →  ( ¬  0  ≤  𝑧  →  𝑧  ≤  0 ) ) | 
						
							| 90 |  | xle0neg1 | ⊢ ( 𝑧  ∈  ℝ*  →  ( 𝑧  ≤  0  ↔  0  ≤  -𝑒 𝑧 ) ) | 
						
							| 91 | 89 90 | sylibd | ⊢ ( 𝑧  ∈  ℝ*  →  ( ¬  0  ≤  𝑧  →  0  ≤  -𝑒 𝑧 ) ) | 
						
							| 92 | 91 | imp | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  0  ≤  -𝑒 𝑧 ) | 
						
							| 93 |  | elxrge0 | ⊢ ( -𝑒 𝑧  ∈  ( 0 [,] +∞ )  ↔  ( -𝑒 𝑧  ∈  ℝ*  ∧  0  ≤  -𝑒 𝑧 ) ) | 
						
							| 94 | 85 92 93 | sylanbrc | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  -𝑒 𝑧  ∈  ( 0 [,] +∞ ) ) | 
						
							| 95 | 62 | ffvelcdmi | ⊢ ( -𝑒 𝑧  ∈  ( 0 [,] +∞ )  →  ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 96 | 94 95 | syl | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 97 | 58 96 | sselid | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( - 1 [,] 1 ) ) | 
						
							| 98 |  | iccssre | ⊢ ( ( - 1  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( - 1 [,] 1 )  ⊆  ℝ ) | 
						
							| 99 | 11 12 98 | mp2an | ⊢ ( - 1 [,] 1 )  ⊆  ℝ | 
						
							| 100 | 99 97 | sselid | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ℝ ) | 
						
							| 101 |  | iccneg | ⊢ ( ( - 1  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ℝ )  →  ( ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( - 1 [,] 1 )  ↔  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( - 1 [,] - - 1 ) ) ) | 
						
							| 102 | 11 12 101 | mp3an12 | ⊢ ( ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ℝ  →  ( ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( - 1 [,] 1 )  ↔  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( - 1 [,] - - 1 ) ) ) | 
						
							| 103 | 100 102 | syl | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( - 1 [,] 1 )  ↔  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( - 1 [,] - - 1 ) ) ) | 
						
							| 104 | 97 103 | mpbid | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( - 1 [,] - - 1 ) ) | 
						
							| 105 |  | negneg1e1 | ⊢ - - 1  =  1 | 
						
							| 106 | 105 | oveq2i | ⊢ ( - 1 [,] - - 1 )  =  ( - 1 [,] 1 ) | 
						
							| 107 | 104 106 | eleqtrdi | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( - 1 [,] 1 ) ) | 
						
							| 108 |  | xle0neg2 | ⊢ ( 𝑧  ∈  ℝ*  →  ( 0  ≤  𝑧  ↔  -𝑒 𝑧  ≤  0 ) ) | 
						
							| 109 | 108 | notbid | ⊢ ( 𝑧  ∈  ℝ*  →  ( ¬  0  ≤  𝑧  ↔  ¬  -𝑒 𝑧  ≤  0 ) ) | 
						
							| 110 | 109 | biimpa | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ¬  -𝑒 𝑧  ≤  0 ) | 
						
							| 111 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  ∧  -𝑒 𝑧  ∈  ( 0 [,] +∞ ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  =  -𝑒 𝑧 ) | 
						
							| 112 | 22 94 111 | sylancr | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  =  -𝑒 𝑧 ) | 
						
							| 113 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 114 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 115 |  | neeq2 | ⊢ ( 𝑥  =  0  →  ( 1  ≠  𝑥  ↔  1  ≠  0 ) ) | 
						
							| 116 | 114 115 | mpbiri | ⊢ ( 𝑥  =  0  →  1  ≠  𝑥 ) | 
						
							| 117 | 116 | necomd | ⊢ ( 𝑥  =  0  →  𝑥  ≠  1 ) | 
						
							| 118 |  | ifnefalse | ⊢ ( 𝑥  ≠  1  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) | 
						
							| 119 | 117 118 | syl | ⊢ ( 𝑥  =  0  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) | 
						
							| 120 |  | id | ⊢ ( 𝑥  =  0  →  𝑥  =  0 ) | 
						
							| 121 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 1  −  𝑥 )  =  ( 1  −  0 ) ) | 
						
							| 122 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 123 | 121 122 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( 1  −  𝑥 )  =  1 ) | 
						
							| 124 | 120 123 | oveq12d | ⊢ ( 𝑥  =  0  →  ( 𝑥  /  ( 1  −  𝑥 ) )  =  ( 0  /  1 ) ) | 
						
							| 125 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 126 | 125 114 | div0i | ⊢ ( 0  /  1 )  =  0 | 
						
							| 127 | 124 126 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( 𝑥  /  ( 1  −  𝑥 ) )  =  0 ) | 
						
							| 128 | 119 127 | eqtrd | ⊢ ( 𝑥  =  0  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  0 ) | 
						
							| 129 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 130 | 128 1 129 | fvmpt | ⊢ ( 0  ∈  ( 0 [,] 1 )  →  ( 𝐹 ‘ 0 )  =  0 ) | 
						
							| 131 | 113 130 | ax-mp | ⊢ ( 𝐹 ‘ 0 )  =  0 | 
						
							| 132 | 131 | a1i | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( 𝐹 ‘ 0 )  =  0 ) | 
						
							| 133 | 112 132 | breq12d | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  ≤  ( 𝐹 ‘ 0 )  ↔  -𝑒 𝑧  ≤  0 ) ) | 
						
							| 134 | 110 133 | mtbird | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ¬  ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  ≤  ( 𝐹 ‘ 0 ) ) | 
						
							| 135 |  | eqid | ⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) ) | 
						
							| 136 | 1 135 | iccpnfhmeo | ⊢ ( 𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ∧  𝐹  ∈  ( II Homeo ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) ) ) ) | 
						
							| 137 | 136 | simpli | ⊢ 𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) | 
						
							| 138 |  | iccssxr | ⊢ ( 0 [,] 1 )  ⊆  ℝ* | 
						
							| 139 | 138 10 | pm3.2i | ⊢ ( ( 0 [,] 1 )  ⊆  ℝ*  ∧  ( 0 [,] +∞ )  ⊆  ℝ* ) | 
						
							| 140 |  | leisorel | ⊢ ( ( 𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ∧  ( ( 0 [,] 1 )  ⊆  ℝ*  ∧  ( 0 [,] +∞ )  ⊆  ℝ* )  ∧  ( ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( 0 [,] 1 )  ∧  0  ∈  ( 0 [,] 1 ) ) )  →  ( ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ≤  0  ↔  ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  ≤  ( 𝐹 ‘ 0 ) ) ) | 
						
							| 141 | 137 139 140 | mp3an12 | ⊢ ( ( ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( 0 [,] 1 )  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ≤  0  ↔  ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  ≤  ( 𝐹 ‘ 0 ) ) ) | 
						
							| 142 | 96 113 141 | sylancl | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ≤  0  ↔  ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  ≤  ( 𝐹 ‘ 0 ) ) ) | 
						
							| 143 | 134 142 | mtbird | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ¬  ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ≤  0 ) | 
						
							| 144 | 100 | le0neg1d | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ≤  0  ↔  0  ≤  - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) | 
						
							| 145 | 143 144 | mtbid | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ¬  0  ≤  - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) | 
						
							| 146 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 147 | 146 96 | sselid | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ℝ ) | 
						
							| 148 | 147 | recnd | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ℂ ) | 
						
							| 149 | 148 | negnegd | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  - - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  =  ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) | 
						
							| 150 | 149 | fveq2d | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) | 
						
							| 151 | 150 112 | eqtrd | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  =  -𝑒 𝑧 ) | 
						
							| 152 |  | xnegeq | ⊢ ( ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  =  -𝑒 𝑧  →  -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  =  -𝑒 -𝑒 𝑧 ) | 
						
							| 153 | 151 152 | syl | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  =  -𝑒 -𝑒 𝑧 ) | 
						
							| 154 |  | xnegneg | ⊢ ( 𝑧  ∈  ℝ*  →  -𝑒 -𝑒 𝑧  =  𝑧 ) | 
						
							| 155 | 154 | adantr | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  -𝑒 -𝑒 𝑧  =  𝑧 ) | 
						
							| 156 | 153 155 | eqtr2d | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  𝑧  =  -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) | 
						
							| 157 |  | breq2 | ⊢ ( 𝑦  =  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  →  ( 0  ≤  𝑦  ↔  0  ≤  - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) | 
						
							| 158 | 157 | notbid | ⊢ ( 𝑦  =  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  →  ( ¬  0  ≤  𝑦  ↔  ¬  0  ≤  - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) | 
						
							| 159 |  | negeq | ⊢ ( 𝑦  =  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  →  - 𝑦  =  - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) | 
						
							| 160 | 159 | fveq2d | ⊢ ( 𝑦  =  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  →  ( 𝐹 ‘ - 𝑦 )  =  ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) | 
						
							| 161 |  | xnegeq | ⊢ ( ( 𝐹 ‘ - 𝑦 )  =  ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) )  →  -𝑒 ( 𝐹 ‘ - 𝑦 )  =  -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) | 
						
							| 162 | 160 161 | syl | ⊢ ( 𝑦  =  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  →  -𝑒 ( 𝐹 ‘ - 𝑦 )  =  -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) | 
						
							| 163 | 162 | eqeq2d | ⊢ ( 𝑦  =  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  →  ( 𝑧  =  -𝑒 ( 𝐹 ‘ - 𝑦 )  ↔  𝑧  =  -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) ) | 
						
							| 164 | 158 163 | anbi12d | ⊢ ( 𝑦  =  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  →  ( ( ¬  0  ≤  𝑦  ∧  𝑧  =  -𝑒 ( 𝐹 ‘ - 𝑦 ) )  ↔  ( ¬  0  ≤  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∧  𝑧  =  -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) ) ) | 
						
							| 165 | 164 | rspcev | ⊢ ( ( - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∈  ( - 1 [,] 1 )  ∧  ( ¬  0  ≤  - ( ◡ 𝐹 ‘ -𝑒 𝑧 )  ∧  𝑧  =  -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) )  →  ∃ 𝑦  ∈  ( - 1 [,] 1 ) ( ¬  0  ≤  𝑦  ∧  𝑧  =  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 166 | 107 145 156 165 | syl12anc | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ∃ 𝑦  ∈  ( - 1 [,] 1 ) ( ¬  0  ≤  𝑦  ∧  𝑧  =  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 167 |  | iffalse | ⊢ ( ¬  0  ≤  𝑦  →  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) )  =  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) | 
						
							| 168 | 167 | eqeq2d | ⊢ ( ¬  0  ≤  𝑦  →  ( 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) )  ↔  𝑧  =  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 169 | 168 | biimpar | ⊢ ( ( ¬  0  ≤  𝑦  ∧  𝑧  =  -𝑒 ( 𝐹 ‘ - 𝑦 ) )  →  𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 170 | 169 | reximi | ⊢ ( ∃ 𝑦  ∈  ( - 1 [,] 1 ) ( ¬  0  ≤  𝑦  ∧  𝑧  =  -𝑒 ( 𝐹 ‘ - 𝑦 ) )  →  ∃ 𝑦  ∈  ( - 1 [,] 1 ) 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 171 | 166 170 | syl | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ¬  0  ≤  𝑧 )  →  ∃ 𝑦  ∈  ( - 1 [,] 1 ) 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 172 | 83 171 | pm2.61dan | ⊢ ( 𝑧  ∈  ℝ*  →  ∃ 𝑦  ∈  ( - 1 [,] 1 ) 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | 
						
							| 173 | 51 172 | mprgbir | ⊢ ℝ*  ⊆  { 𝑧  ∣  ∃ 𝑦  ∈  ( - 1 [,] 1 ) 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) } | 
						
							| 174 | 2 | rnmpt | ⊢ ran  𝐺  =  { 𝑧  ∣  ∃ 𝑦  ∈  ( - 1 [,] 1 ) 𝑧  =  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) ) } | 
						
							| 175 | 173 174 | sseqtrri | ⊢ ℝ*  ⊆  ran  𝐺 | 
						
							| 176 | 50 175 | eqssi | ⊢ ran  𝐺  =  ℝ* | 
						
							| 177 |  | dffo2 | ⊢ ( 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ*  ↔  ( 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ*  ∧  ran  𝐺  =  ℝ* ) ) | 
						
							| 178 | 48 176 177 | mpbir2an | ⊢ 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ* | 
						
							| 179 |  | breq1 | ⊢ ( ( 𝐹 ‘ 𝑧 )  =  if ( 0  ≤  𝑧 ,  ( 𝐹 ‘ 𝑧 ) ,  -𝑒 ( 𝐹 ‘ - 𝑧 ) )  →  ( ( 𝐹 ‘ 𝑧 )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) )  ↔  if ( 0  ≤  𝑧 ,  ( 𝐹 ‘ 𝑧 ) ,  -𝑒 ( 𝐹 ‘ - 𝑧 ) )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) | 
						
							| 180 |  | breq1 | ⊢ ( -𝑒 ( 𝐹 ‘ - 𝑧 )  =  if ( 0  ≤  𝑧 ,  ( 𝐹 ‘ 𝑧 ) ,  -𝑒 ( 𝐹 ‘ - 𝑧 ) )  →  ( -𝑒 ( 𝐹 ‘ - 𝑧 )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) )  ↔  if ( 0  ≤  𝑧 ,  ( 𝐹 ‘ 𝑧 ) ,  -𝑒 ( 𝐹 ‘ - 𝑧 ) )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) | 
						
							| 181 |  | simpl3 | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  𝑧  <  𝑤 ) | 
						
							| 182 |  | simpl1 | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  𝑧  ∈  ( - 1 [,] 1 ) ) | 
						
							| 183 |  | simpr | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  0  ≤  𝑧 ) | 
						
							| 184 |  | breq2 | ⊢ ( 𝑦  =  𝑧  →  ( 0  ≤  𝑦  ↔  0  ≤  𝑧 ) ) | 
						
							| 185 |  | eleq1w | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  ∈  ( 0 [,] 1 )  ↔  𝑧  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 186 | 184 185 | imbi12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 0  ≤  𝑦  →  𝑦  ∈  ( 0 [,] 1 ) )  ↔  ( 0  ≤  𝑧  →  𝑧  ∈  ( 0 [,] 1 ) ) ) ) | 
						
							| 187 | 20 | ex | ⊢ ( 𝑦  ∈  ( - 1 [,] 1 )  →  ( 0  ≤  𝑦  →  𝑦  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 188 | 186 187 | vtoclga | ⊢ ( 𝑧  ∈  ( - 1 [,] 1 )  →  ( 0  ≤  𝑧  →  𝑧  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 189 | 182 183 188 | sylc | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  𝑧  ∈  ( 0 [,] 1 ) ) | 
						
							| 190 |  | simpl2 | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  𝑤  ∈  ( - 1 [,] 1 ) ) | 
						
							| 191 | 30 | a1i | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  0  ∈  ℝ ) | 
						
							| 192 | 99 182 | sselid | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  𝑧  ∈  ℝ ) | 
						
							| 193 | 99 190 | sselid | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  𝑤  ∈  ℝ ) | 
						
							| 194 | 192 193 181 | ltled | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  𝑧  ≤  𝑤 ) | 
						
							| 195 | 191 192 193 183 194 | letrd | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  0  ≤  𝑤 ) | 
						
							| 196 |  | breq2 | ⊢ ( 𝑦  =  𝑤  →  ( 0  ≤  𝑦  ↔  0  ≤  𝑤 ) ) | 
						
							| 197 |  | eleq1w | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦  ∈  ( 0 [,] 1 )  ↔  𝑤  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 198 | 196 197 | imbi12d | ⊢ ( 𝑦  =  𝑤  →  ( ( 0  ≤  𝑦  →  𝑦  ∈  ( 0 [,] 1 ) )  ↔  ( 0  ≤  𝑤  →  𝑤  ∈  ( 0 [,] 1 ) ) ) ) | 
						
							| 199 | 198 187 | vtoclga | ⊢ ( 𝑤  ∈  ( - 1 [,] 1 )  →  ( 0  ≤  𝑤  →  𝑤  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 200 | 190 195 199 | sylc | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  𝑤  ∈  ( 0 [,] 1 ) ) | 
						
							| 201 |  | isorel | ⊢ ( ( 𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ∧  ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑧  <  𝑤  ↔  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 202 | 137 201 | mpan | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 ) )  →  ( 𝑧  <  𝑤  ↔  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 203 | 189 200 202 | syl2anc | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  ( 𝑧  <  𝑤  ↔  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 204 | 181 203 | mpbid | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 205 | 195 | iftrued | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 206 | 204 205 | breqtrrd | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  0  ≤  𝑧 )  →  ( 𝐹 ‘ 𝑧 )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) | 
						
							| 207 |  | breq2 | ⊢ ( ( 𝐹 ‘ 𝑤 )  =  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) )  →  ( -𝑒 ( 𝐹 ‘ - 𝑧 )  <  ( 𝐹 ‘ 𝑤 )  ↔  -𝑒 ( 𝐹 ‘ - 𝑧 )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) | 
						
							| 208 |  | breq2 | ⊢ ( -𝑒 ( 𝐹 ‘ - 𝑤 )  =  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) )  →  ( -𝑒 ( 𝐹 ‘ - 𝑧 )  <  -𝑒 ( 𝐹 ‘ - 𝑤 )  ↔  -𝑒 ( 𝐹 ‘ - 𝑧 )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) | 
						
							| 209 |  | simpl1 | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  →  𝑧  ∈  ( - 1 [,] 1 ) ) | 
						
							| 210 |  | simpr | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  →  ¬  0  ≤  𝑧 ) | 
						
							| 211 | 184 | notbid | ⊢ ( 𝑦  =  𝑧  →  ( ¬  0  ≤  𝑦  ↔  ¬  0  ≤  𝑧 ) ) | 
						
							| 212 |  | negeq | ⊢ ( 𝑦  =  𝑧  →  - 𝑦  =  - 𝑧 ) | 
						
							| 213 | 212 | eleq1d | ⊢ ( 𝑦  =  𝑧  →  ( - 𝑦  ∈  ( 0 [,] 1 )  ↔  - 𝑧  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 214 | 211 213 | imbi12d | ⊢ ( 𝑦  =  𝑧  →  ( ( ¬  0  ≤  𝑦  →  - 𝑦  ∈  ( 0 [,] 1 ) )  ↔  ( ¬  0  ≤  𝑧  →  - 𝑧  ∈  ( 0 [,] 1 ) ) ) ) | 
						
							| 215 | 42 | ex | ⊢ ( 𝑦  ∈  ( - 1 [,] 1 )  →  ( ¬  0  ≤  𝑦  →  - 𝑦  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 216 | 214 215 | vtoclga | ⊢ ( 𝑧  ∈  ( - 1 [,] 1 )  →  ( ¬  0  ≤  𝑧  →  - 𝑧  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 217 | 209 210 216 | sylc | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  →  - 𝑧  ∈  ( 0 [,] 1 ) ) | 
						
							| 218 | 217 | adantr | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  - 𝑧  ∈  ( 0 [,] 1 ) ) | 
						
							| 219 | 24 | ffvelcdmi | ⊢ ( - 𝑧  ∈  ( 0 [,] 1 )  →  ( 𝐹 ‘ - 𝑧 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 220 | 218 219 | syl | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  ( 𝐹 ‘ - 𝑧 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 221 | 10 220 | sselid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  ( 𝐹 ‘ - 𝑧 )  ∈  ℝ* ) | 
						
							| 222 | 221 | xnegcld | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  -𝑒 ( 𝐹 ‘ - 𝑧 )  ∈  ℝ* ) | 
						
							| 223 | 86 | a1i | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  0  ∈  ℝ* ) | 
						
							| 224 |  | simpll2 | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  𝑤  ∈  ( - 1 [,] 1 ) ) | 
						
							| 225 |  | simpr | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  0  ≤  𝑤 ) | 
						
							| 226 | 224 225 199 | sylc | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  𝑤  ∈  ( 0 [,] 1 ) ) | 
						
							| 227 | 24 | ffvelcdmi | ⊢ ( 𝑤  ∈  ( 0 [,] 1 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 228 | 226 227 | syl | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 229 | 10 228 | sselid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ℝ* ) | 
						
							| 230 | 210 | adantr | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  ¬  0  ≤  𝑧 ) | 
						
							| 231 |  | simpll1 | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  𝑧  ∈  ( - 1 [,] 1 ) ) | 
						
							| 232 | 99 231 | sselid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  𝑧  ∈  ℝ ) | 
						
							| 233 |  | ltnle | ⊢ ( ( 𝑧  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝑧  <  0  ↔  ¬  0  ≤  𝑧 ) ) | 
						
							| 234 | 232 30 233 | sylancl | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  ( 𝑧  <  0  ↔  ¬  0  ≤  𝑧 ) ) | 
						
							| 235 | 230 234 | mpbird | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  𝑧  <  0 ) | 
						
							| 236 | 232 | lt0neg1d | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  ( 𝑧  <  0  ↔  0  <  - 𝑧 ) ) | 
						
							| 237 | 235 236 | mpbid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  0  <  - 𝑧 ) | 
						
							| 238 |  | isorel | ⊢ ( ( 𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ∧  ( 0  ∈  ( 0 [,] 1 )  ∧  - 𝑧  ∈  ( 0 [,] 1 ) ) )  →  ( 0  <  - 𝑧  ↔  ( 𝐹 ‘ 0 )  <  ( 𝐹 ‘ - 𝑧 ) ) ) | 
						
							| 239 | 137 238 | mpan | ⊢ ( ( 0  ∈  ( 0 [,] 1 )  ∧  - 𝑧  ∈  ( 0 [,] 1 ) )  →  ( 0  <  - 𝑧  ↔  ( 𝐹 ‘ 0 )  <  ( 𝐹 ‘ - 𝑧 ) ) ) | 
						
							| 240 | 113 218 239 | sylancr | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  ( 0  <  - 𝑧  ↔  ( 𝐹 ‘ 0 )  <  ( 𝐹 ‘ - 𝑧 ) ) ) | 
						
							| 241 | 237 240 | mpbid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  ( 𝐹 ‘ 0 )  <  ( 𝐹 ‘ - 𝑧 ) ) | 
						
							| 242 | 131 241 | eqbrtrrid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  0  <  ( 𝐹 ‘ - 𝑧 ) ) | 
						
							| 243 |  | xlt0neg2 | ⊢ ( ( 𝐹 ‘ - 𝑧 )  ∈  ℝ*  →  ( 0  <  ( 𝐹 ‘ - 𝑧 )  ↔  -𝑒 ( 𝐹 ‘ - 𝑧 )  <  0 ) ) | 
						
							| 244 | 221 243 | syl | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  ( 0  <  ( 𝐹 ‘ - 𝑧 )  ↔  -𝑒 ( 𝐹 ‘ - 𝑧 )  <  0 ) ) | 
						
							| 245 | 242 244 | mpbid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  -𝑒 ( 𝐹 ‘ - 𝑧 )  <  0 ) | 
						
							| 246 |  | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝑤 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝐹 ‘ 𝑤 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 247 | 246 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑤 )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 248 | 228 247 | syl | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  0  ≤  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 249 | 222 223 229 245 248 | xrltletrd | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  0  ≤  𝑤 )  →  -𝑒 ( 𝐹 ‘ - 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 250 |  | simpll3 | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  𝑧  <  𝑤 ) | 
						
							| 251 |  | simpll1 | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  𝑧  ∈  ( - 1 [,] 1 ) ) | 
						
							| 252 | 99 251 | sselid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  𝑧  ∈  ℝ ) | 
						
							| 253 |  | simpll2 | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  𝑤  ∈  ( - 1 [,] 1 ) ) | 
						
							| 254 | 99 253 | sselid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  𝑤  ∈  ℝ ) | 
						
							| 255 | 252 254 | ltnegd | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  ( 𝑧  <  𝑤  ↔  - 𝑤  <  - 𝑧 ) ) | 
						
							| 256 | 250 255 | mpbid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  - 𝑤  <  - 𝑧 ) | 
						
							| 257 |  | simpr | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  ¬  0  ≤  𝑤 ) | 
						
							| 258 | 196 | notbid | ⊢ ( 𝑦  =  𝑤  →  ( ¬  0  ≤  𝑦  ↔  ¬  0  ≤  𝑤 ) ) | 
						
							| 259 |  | negeq | ⊢ ( 𝑦  =  𝑤  →  - 𝑦  =  - 𝑤 ) | 
						
							| 260 | 259 | eleq1d | ⊢ ( 𝑦  =  𝑤  →  ( - 𝑦  ∈  ( 0 [,] 1 )  ↔  - 𝑤  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 261 | 258 260 | imbi12d | ⊢ ( 𝑦  =  𝑤  →  ( ( ¬  0  ≤  𝑦  →  - 𝑦  ∈  ( 0 [,] 1 ) )  ↔  ( ¬  0  ≤  𝑤  →  - 𝑤  ∈  ( 0 [,] 1 ) ) ) ) | 
						
							| 262 | 261 215 | vtoclga | ⊢ ( 𝑤  ∈  ( - 1 [,] 1 )  →  ( ¬  0  ≤  𝑤  →  - 𝑤  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 263 | 253 257 262 | sylc | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  - 𝑤  ∈  ( 0 [,] 1 ) ) | 
						
							| 264 | 217 | adantr | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  - 𝑧  ∈  ( 0 [,] 1 ) ) | 
						
							| 265 |  | isorel | ⊢ ( ( 𝐹  Isom   <  ,   <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ∧  ( - 𝑤  ∈  ( 0 [,] 1 )  ∧  - 𝑧  ∈  ( 0 [,] 1 ) ) )  →  ( - 𝑤  <  - 𝑧  ↔  ( 𝐹 ‘ - 𝑤 )  <  ( 𝐹 ‘ - 𝑧 ) ) ) | 
						
							| 266 | 137 265 | mpan | ⊢ ( ( - 𝑤  ∈  ( 0 [,] 1 )  ∧  - 𝑧  ∈  ( 0 [,] 1 ) )  →  ( - 𝑤  <  - 𝑧  ↔  ( 𝐹 ‘ - 𝑤 )  <  ( 𝐹 ‘ - 𝑧 ) ) ) | 
						
							| 267 | 263 264 266 | syl2anc | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  ( - 𝑤  <  - 𝑧  ↔  ( 𝐹 ‘ - 𝑤 )  <  ( 𝐹 ‘ - 𝑧 ) ) ) | 
						
							| 268 | 256 267 | mpbid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  ( 𝐹 ‘ - 𝑤 )  <  ( 𝐹 ‘ - 𝑧 ) ) | 
						
							| 269 | 24 | ffvelcdmi | ⊢ ( - 𝑤  ∈  ( 0 [,] 1 )  →  ( 𝐹 ‘ - 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 270 | 263 269 | syl | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  ( 𝐹 ‘ - 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 271 | 10 270 | sselid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  ( 𝐹 ‘ - 𝑤 )  ∈  ℝ* ) | 
						
							| 272 | 264 219 | syl | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  ( 𝐹 ‘ - 𝑧 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 273 | 10 272 | sselid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  ( 𝐹 ‘ - 𝑧 )  ∈  ℝ* ) | 
						
							| 274 |  | xltneg | ⊢ ( ( ( 𝐹 ‘ - 𝑤 )  ∈  ℝ*  ∧  ( 𝐹 ‘ - 𝑧 )  ∈  ℝ* )  →  ( ( 𝐹 ‘ - 𝑤 )  <  ( 𝐹 ‘ - 𝑧 )  ↔  -𝑒 ( 𝐹 ‘ - 𝑧 )  <  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) | 
						
							| 275 | 271 273 274 | syl2anc | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  ( ( 𝐹 ‘ - 𝑤 )  <  ( 𝐹 ‘ - 𝑧 )  ↔  -𝑒 ( 𝐹 ‘ - 𝑧 )  <  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) | 
						
							| 276 | 268 275 | mpbid | ⊢ ( ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  ∧  ¬  0  ≤  𝑤 )  →  -𝑒 ( 𝐹 ‘ - 𝑧 )  <  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) | 
						
							| 277 | 207 208 249 276 | ifbothda | ⊢ ( ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  ∧  ¬  0  ≤  𝑧 )  →  -𝑒 ( 𝐹 ‘ - 𝑧 )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) | 
						
							| 278 | 179 180 206 277 | ifbothda | ⊢ ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 )  ∧  𝑧  <  𝑤 )  →  if ( 0  ≤  𝑧 ,  ( 𝐹 ‘ 𝑧 ) ,  -𝑒 ( 𝐹 ‘ - 𝑧 ) )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) | 
						
							| 279 | 278 | 3expia | ⊢ ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 ) )  →  ( 𝑧  <  𝑤  →  if ( 0  ≤  𝑧 ,  ( 𝐹 ‘ 𝑧 ) ,  -𝑒 ( 𝐹 ‘ - 𝑧 ) )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) | 
						
							| 280 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 281 | 212 | fveq2d | ⊢ ( 𝑦  =  𝑧  →  ( 𝐹 ‘ - 𝑦 )  =  ( 𝐹 ‘ - 𝑧 ) ) | 
						
							| 282 |  | xnegeq | ⊢ ( ( 𝐹 ‘ - 𝑦 )  =  ( 𝐹 ‘ - 𝑧 )  →  -𝑒 ( 𝐹 ‘ - 𝑦 )  =  -𝑒 ( 𝐹 ‘ - 𝑧 ) ) | 
						
							| 283 | 281 282 | syl | ⊢ ( 𝑦  =  𝑧  →  -𝑒 ( 𝐹 ‘ - 𝑦 )  =  -𝑒 ( 𝐹 ‘ - 𝑧 ) ) | 
						
							| 284 | 184 280 283 | ifbieq12d | ⊢ ( 𝑦  =  𝑧  →  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) )  =  if ( 0  ≤  𝑧 ,  ( 𝐹 ‘ 𝑧 ) ,  -𝑒 ( 𝐹 ‘ - 𝑧 ) ) ) | 
						
							| 285 |  | fvex | ⊢ ( 𝐹 ‘ 𝑧 )  ∈  V | 
						
							| 286 |  | xnegex | ⊢ -𝑒 ( 𝐹 ‘ - 𝑧 )  ∈  V | 
						
							| 287 | 285 286 | ifex | ⊢ if ( 0  ≤  𝑧 ,  ( 𝐹 ‘ 𝑧 ) ,  -𝑒 ( 𝐹 ‘ - 𝑧 ) )  ∈  V | 
						
							| 288 | 284 2 287 | fvmpt | ⊢ ( 𝑧  ∈  ( - 1 [,] 1 )  →  ( 𝐺 ‘ 𝑧 )  =  if ( 0  ≤  𝑧 ,  ( 𝐹 ‘ 𝑧 ) ,  -𝑒 ( 𝐹 ‘ - 𝑧 ) ) ) | 
						
							| 289 |  | fveq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 290 | 259 | fveq2d | ⊢ ( 𝑦  =  𝑤  →  ( 𝐹 ‘ - 𝑦 )  =  ( 𝐹 ‘ - 𝑤 ) ) | 
						
							| 291 |  | xnegeq | ⊢ ( ( 𝐹 ‘ - 𝑦 )  =  ( 𝐹 ‘ - 𝑤 )  →  -𝑒 ( 𝐹 ‘ - 𝑦 )  =  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) | 
						
							| 292 | 290 291 | syl | ⊢ ( 𝑦  =  𝑤  →  -𝑒 ( 𝐹 ‘ - 𝑦 )  =  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) | 
						
							| 293 | 196 289 292 | ifbieq12d | ⊢ ( 𝑦  =  𝑤  →  if ( 0  ≤  𝑦 ,  ( 𝐹 ‘ 𝑦 ) ,  -𝑒 ( 𝐹 ‘ - 𝑦 ) )  =  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) | 
						
							| 294 |  | fvex | ⊢ ( 𝐹 ‘ 𝑤 )  ∈  V | 
						
							| 295 |  | xnegex | ⊢ -𝑒 ( 𝐹 ‘ - 𝑤 )  ∈  V | 
						
							| 296 | 294 295 | ifex | ⊢ if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) )  ∈  V | 
						
							| 297 | 293 2 296 | fvmpt | ⊢ ( 𝑤  ∈  ( - 1 [,] 1 )  →  ( 𝐺 ‘ 𝑤 )  =  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) | 
						
							| 298 | 288 297 | breqan12d | ⊢ ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 ) )  →  ( ( 𝐺 ‘ 𝑧 )  <  ( 𝐺 ‘ 𝑤 )  ↔  if ( 0  ≤  𝑧 ,  ( 𝐹 ‘ 𝑧 ) ,  -𝑒 ( 𝐹 ‘ - 𝑧 ) )  <  if ( 0  ≤  𝑤 ,  ( 𝐹 ‘ 𝑤 ) ,  -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) | 
						
							| 299 | 279 298 | sylibrd | ⊢ ( ( 𝑧  ∈  ( - 1 [,] 1 )  ∧  𝑤  ∈  ( - 1 [,] 1 ) )  →  ( 𝑧  <  𝑤  →  ( 𝐺 ‘ 𝑧 )  <  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 300 | 299 | rgen2 | ⊢ ∀ 𝑧  ∈  ( - 1 [,] 1 ) ∀ 𝑤  ∈  ( - 1 [,] 1 ) ( 𝑧  <  𝑤  →  ( 𝐺 ‘ 𝑧 )  <  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 301 |  | soisoi | ⊢ ( ( (  <   Or  ( - 1 [,] 1 )  ∧   <   Po  ℝ* )  ∧  ( 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ*  ∧  ∀ 𝑧  ∈  ( - 1 [,] 1 ) ∀ 𝑤  ∈  ( - 1 [,] 1 ) ( 𝑧  <  𝑤  →  ( 𝐺 ‘ 𝑧 )  <  ( 𝐺 ‘ 𝑤 ) ) ) )  →  𝐺  Isom   <  ,   <  ( ( - 1 [,] 1 ) ,  ℝ* ) ) | 
						
							| 302 | 7 9 178 300 301 | mp4an | ⊢ 𝐺  Isom   <  ,   <  ( ( - 1 [,] 1 ) ,  ℝ* ) | 
						
							| 303 |  | letsr | ⊢  ≤   ∈   TosetRel | 
						
							| 304 | 303 | elexi | ⊢  ≤   ∈  V | 
						
							| 305 | 304 | inex1 | ⊢ (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) )  ∈  V | 
						
							| 306 |  | ssid | ⊢ ℝ*  ⊆  ℝ* | 
						
							| 307 |  | leiso | ⊢ ( ( ( - 1 [,] 1 )  ⊆  ℝ*  ∧  ℝ*  ⊆  ℝ* )  →  ( 𝐺  Isom   <  ,   <  ( ( - 1 [,] 1 ) ,  ℝ* )  ↔  𝐺  Isom   ≤  ,   ≤  ( ( - 1 [,] 1 ) ,  ℝ* ) ) ) | 
						
							| 308 | 4 306 307 | mp2an | ⊢ ( 𝐺  Isom   <  ,   <  ( ( - 1 [,] 1 ) ,  ℝ* )  ↔  𝐺  Isom   ≤  ,   ≤  ( ( - 1 [,] 1 ) ,  ℝ* ) ) | 
						
							| 309 | 302 308 | mpbi | ⊢ 𝐺  Isom   ≤  ,   ≤  ( ( - 1 [,] 1 ) ,  ℝ* ) | 
						
							| 310 |  | isores1 | ⊢ ( 𝐺  Isom   ≤  ,   ≤  ( ( - 1 [,] 1 ) ,  ℝ* )  ↔  𝐺  Isom  (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) ) ,   ≤  ( ( - 1 [,] 1 ) ,  ℝ* ) ) | 
						
							| 311 | 309 310 | mpbi | ⊢ 𝐺  Isom  (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) ) ,   ≤  ( ( - 1 [,] 1 ) ,  ℝ* ) | 
						
							| 312 |  | tsrps | ⊢ (  ≤   ∈   TosetRel   →   ≤   ∈  PosetRel ) | 
						
							| 313 | 303 312 | ax-mp | ⊢  ≤   ∈  PosetRel | 
						
							| 314 |  | ledm | ⊢ ℝ*  =  dom   ≤ | 
						
							| 315 | 314 | psssdm | ⊢ ( (  ≤   ∈  PosetRel  ∧  ( - 1 [,] 1 )  ⊆  ℝ* )  →  dom  (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) )  =  ( - 1 [,] 1 ) ) | 
						
							| 316 | 313 4 315 | mp2an | ⊢ dom  (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) )  =  ( - 1 [,] 1 ) | 
						
							| 317 | 316 | eqcomi | ⊢ ( - 1 [,] 1 )  =  dom  (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) ) | 
						
							| 318 | 317 314 | ordthmeo | ⊢ ( ( (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) )  ∈  V  ∧   ≤   ∈   TosetRel   ∧  𝐺  Isom  (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) ) ,   ≤  ( ( - 1 [,] 1 ) ,  ℝ* ) )  →  𝐺  ∈  ( ( ordTop ‘ (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘  ≤  ) ) ) | 
						
							| 319 | 305 303 311 318 | mp3an | ⊢ 𝐺  ∈  ( ( ordTop ‘ (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘  ≤  ) ) | 
						
							| 320 |  | eqid | ⊢ ( ordTop ‘  ≤  )  =  ( ordTop ‘  ≤  ) | 
						
							| 321 | 3 320 | xrrest2 | ⊢ ( ( - 1 [,] 1 )  ⊆  ℝ  →  ( 𝐽  ↾t  ( - 1 [,] 1 ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( - 1 [,] 1 ) ) ) | 
						
							| 322 | 99 321 | ax-mp | ⊢ ( 𝐽  ↾t  ( - 1 [,] 1 ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( - 1 [,] 1 ) ) | 
						
							| 323 |  | ordtresticc | ⊢ ( ( ordTop ‘  ≤  )  ↾t  ( - 1 [,] 1 ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) ) ) | 
						
							| 324 | 322 323 | eqtri | ⊢ ( 𝐽  ↾t  ( - 1 [,] 1 ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) ) ) | 
						
							| 325 | 324 | oveq1i | ⊢ ( ( 𝐽  ↾t  ( - 1 [,] 1 ) ) Homeo ( ordTop ‘  ≤  ) )  =  ( ( ordTop ‘ (  ≤   ∩  ( ( - 1 [,] 1 )  ×  ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘  ≤  ) ) | 
						
							| 326 | 319 325 | eleqtrri | ⊢ 𝐺  ∈  ( ( 𝐽  ↾t  ( - 1 [,] 1 ) ) Homeo ( ordTop ‘  ≤  ) ) | 
						
							| 327 | 302 326 | pm3.2i | ⊢ ( 𝐺  Isom   <  ,   <  ( ( - 1 [,] 1 ) ,  ℝ* )  ∧  𝐺  ∈  ( ( 𝐽  ↾t  ( - 1 [,] 1 ) ) Homeo ( ordTop ‘  ≤  ) ) ) |