Metamath Proof Explorer


Theorem xrhmeo

Description: The bijection from [ -u 1 , 1 ] to the extended reals is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses xrhmeo.f 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) )
xrhmeo.g 𝐺 = ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
xrhmeo.j 𝐽 = ( TopOpen ‘ ℂfld )
Assertion xrhmeo ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ∧ 𝐺 ∈ ( ( 𝐽t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) )

Proof

Step Hyp Ref Expression
1 xrhmeo.f 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) )
2 xrhmeo.g 𝐺 = ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
3 xrhmeo.j 𝐽 = ( TopOpen ‘ ℂfld )
4 iccssxr ( - 1 [,] 1 ) ⊆ ℝ*
5 xrltso < Or ℝ*
6 soss ( ( - 1 [,] 1 ) ⊆ ℝ* → ( < Or ℝ* → < Or ( - 1 [,] 1 ) ) )
7 4 5 6 mp2 < Or ( - 1 [,] 1 )
8 sopo ( < Or ℝ* → < Po ℝ* )
9 5 8 ax-mp < Po ℝ*
10 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
11 neg1rr - 1 ∈ ℝ
12 1re 1 ∈ ℝ
13 11 12 elicc2i ( 𝑦 ∈ ( - 1 [,] 1 ) ↔ ( 𝑦 ∈ ℝ ∧ - 1 ≤ 𝑦𝑦 ≤ 1 ) )
14 13 simp1bi ( 𝑦 ∈ ( - 1 [,] 1 ) → 𝑦 ∈ ℝ )
15 14 adantr ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 𝑦 ∈ ℝ )
16 simpr ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 0 ≤ 𝑦 )
17 13 simp3bi ( 𝑦 ∈ ( - 1 [,] 1 ) → 𝑦 ≤ 1 )
18 17 adantr ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 𝑦 ≤ 1 )
19 elicc01 ( 𝑦 ∈ ( 0 [,] 1 ) ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 ≤ 1 ) )
20 15 16 18 19 syl3anbrc ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 𝑦 ∈ ( 0 [,] 1 ) )
21 1 iccpnfcnv ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ 𝐹 = ( 𝑣 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑣 = +∞ , 1 , ( 𝑣 / ( 1 + 𝑣 ) ) ) ) )
22 21 simpli 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )
23 f1of ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) )
24 22 23 ax-mp 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ )
25 24 ffvelrni ( 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐹𝑦 ) ∈ ( 0 [,] +∞ ) )
26 20 25 syl ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → ( 𝐹𝑦 ) ∈ ( 0 [,] +∞ ) )
27 10 26 sselid ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → ( 𝐹𝑦 ) ∈ ℝ* )
28 14 adantr ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → 𝑦 ∈ ℝ )
29 28 renegcld ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 𝑦 ∈ ℝ )
30 0re 0 ∈ ℝ
31 letric ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 ≤ 𝑦𝑦 ≤ 0 ) )
32 30 14 31 sylancr ( 𝑦 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑦𝑦 ≤ 0 ) )
33 32 orcanai ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → 𝑦 ≤ 0 )
34 28 le0neg1d ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( 𝑦 ≤ 0 ↔ 0 ≤ - 𝑦 ) )
35 33 34 mpbid ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → 0 ≤ - 𝑦 )
36 13 simp2bi ( 𝑦 ∈ ( - 1 [,] 1 ) → - 1 ≤ 𝑦 )
37 36 adantr ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 1 ≤ 𝑦 )
38 lenegcon1 ( ( 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( - 1 ≤ 𝑦 ↔ - 𝑦 ≤ 1 ) )
39 12 28 38 sylancr ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( - 1 ≤ 𝑦 ↔ - 𝑦 ≤ 1 ) )
40 37 39 mpbid ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 𝑦 ≤ 1 )
41 elicc01 ( - 𝑦 ∈ ( 0 [,] 1 ) ↔ ( - 𝑦 ∈ ℝ ∧ 0 ≤ - 𝑦 ∧ - 𝑦 ≤ 1 ) )
42 29 35 40 41 syl3anbrc ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 𝑦 ∈ ( 0 [,] 1 ) )
43 24 ffvelrni ( - 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ - 𝑦 ) ∈ ( 0 [,] +∞ ) )
44 42 43 syl ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( 𝐹 ‘ - 𝑦 ) ∈ ( 0 [,] +∞ ) )
45 10 44 sselid ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( 𝐹 ‘ - 𝑦 ) ∈ ℝ* )
46 45 xnegcld ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) ∈ ℝ* )
47 27 46 ifclda ( 𝑦 ∈ ( - 1 [,] 1 ) → if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ∈ ℝ* )
48 2 47 fmpti 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ*
49 frn ( 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ* → ran 𝐺 ⊆ ℝ* )
50 48 49 ax-mp ran 𝐺 ⊆ ℝ*
51 ssabral ( ℝ* ⊆ { 𝑧 ∣ ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) } ↔ ∀ 𝑧 ∈ ℝ*𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
52 0le1 0 ≤ 1
53 le0neg2 ( 1 ∈ ℝ → ( 0 ≤ 1 ↔ - 1 ≤ 0 ) )
54 12 53 ax-mp ( 0 ≤ 1 ↔ - 1 ≤ 0 )
55 52 54 mpbi - 1 ≤ 0
56 1le1 1 ≤ 1
57 iccss ( ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( - 1 ≤ 0 ∧ 1 ≤ 1 ) ) → ( 0 [,] 1 ) ⊆ ( - 1 [,] 1 ) )
58 11 12 55 56 57 mp4an ( 0 [,] 1 ) ⊆ ( - 1 [,] 1 )
59 elxrge0 ( 𝑧 ∈ ( 0 [,] +∞ ) ↔ ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) )
60 f1ocnv ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → 𝐹 : ( 0 [,] +∞ ) –1-1-onto→ ( 0 [,] 1 ) )
61 f1of ( 𝐹 : ( 0 [,] +∞ ) –1-1-onto→ ( 0 [,] 1 ) → 𝐹 : ( 0 [,] +∞ ) ⟶ ( 0 [,] 1 ) )
62 22 60 61 mp2b 𝐹 : ( 0 [,] +∞ ) ⟶ ( 0 [,] 1 )
63 62 ffvelrni ( 𝑧 ∈ ( 0 [,] +∞ ) → ( 𝐹𝑧 ) ∈ ( 0 [,] 1 ) )
64 59 63 sylbir ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ( 𝐹𝑧 ) ∈ ( 0 [,] 1 ) )
65 58 64 sselid ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ( 𝐹𝑧 ) ∈ ( - 1 [,] 1 ) )
66 elicc01 ( ( 𝐹𝑧 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝐹𝑧 ) ∈ ℝ ∧ 0 ≤ ( 𝐹𝑧 ) ∧ ( 𝐹𝑧 ) ≤ 1 ) )
67 66 simp2bi ( ( 𝐹𝑧 ) ∈ ( 0 [,] 1 ) → 0 ≤ ( 𝐹𝑧 ) )
68 64 67 syl ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → 0 ≤ ( 𝐹𝑧 ) )
69 59 biimpri ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ( 0 [,] +∞ ) )
70 f1ocnvfv2 ( ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = 𝑧 )
71 22 69 70 sylancr ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = 𝑧 )
72 71 eqcomd ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → 𝑧 = ( 𝐹 ‘ ( 𝐹𝑧 ) ) )
73 breq2 ( 𝑦 = ( 𝐹𝑧 ) → ( 0 ≤ 𝑦 ↔ 0 ≤ ( 𝐹𝑧 ) ) )
74 fveq2 ( 𝑦 = ( 𝐹𝑧 ) → ( 𝐹𝑦 ) = ( 𝐹 ‘ ( 𝐹𝑧 ) ) )
75 74 eqeq2d ( 𝑦 = ( 𝐹𝑧 ) → ( 𝑧 = ( 𝐹𝑦 ) ↔ 𝑧 = ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) )
76 73 75 anbi12d ( 𝑦 = ( 𝐹𝑧 ) → ( ( 0 ≤ 𝑦𝑧 = ( 𝐹𝑦 ) ) ↔ ( 0 ≤ ( 𝐹𝑧 ) ∧ 𝑧 = ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) ) )
77 76 rspcev ( ( ( 𝐹𝑧 ) ∈ ( - 1 [,] 1 ) ∧ ( 0 ≤ ( 𝐹𝑧 ) ∧ 𝑧 = ( 𝐹 ‘ ( 𝐹𝑧 ) ) ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( 0 ≤ 𝑦𝑧 = ( 𝐹𝑦 ) ) )
78 65 68 72 77 syl12anc ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( 0 ≤ 𝑦𝑧 = ( 𝐹𝑦 ) ) )
79 iftrue ( 0 ≤ 𝑦 → if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = ( 𝐹𝑦 ) )
80 79 eqeq2d ( 0 ≤ 𝑦 → ( 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ↔ 𝑧 = ( 𝐹𝑦 ) ) )
81 80 biimpar ( ( 0 ≤ 𝑦𝑧 = ( 𝐹𝑦 ) ) → 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
82 81 reximi ( ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( 0 ≤ 𝑦𝑧 = ( 𝐹𝑦 ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
83 78 82 syl ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
84 xnegcl ( 𝑧 ∈ ℝ* → -𝑒 𝑧 ∈ ℝ* )
85 84 adantr ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 𝑧 ∈ ℝ* )
86 0xr 0 ∈ ℝ*
87 xrletri ( ( 0 ∈ ℝ*𝑧 ∈ ℝ* ) → ( 0 ≤ 𝑧𝑧 ≤ 0 ) )
88 86 87 mpan ( 𝑧 ∈ ℝ* → ( 0 ≤ 𝑧𝑧 ≤ 0 ) )
89 88 ord ( 𝑧 ∈ ℝ* → ( ¬ 0 ≤ 𝑧𝑧 ≤ 0 ) )
90 xle0neg1 ( 𝑧 ∈ ℝ* → ( 𝑧 ≤ 0 ↔ 0 ≤ -𝑒 𝑧 ) )
91 89 90 sylibd ( 𝑧 ∈ ℝ* → ( ¬ 0 ≤ 𝑧 → 0 ≤ -𝑒 𝑧 ) )
92 91 imp ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → 0 ≤ -𝑒 𝑧 )
93 elxrge0 ( -𝑒 𝑧 ∈ ( 0 [,] +∞ ) ↔ ( -𝑒 𝑧 ∈ ℝ* ∧ 0 ≤ -𝑒 𝑧 ) )
94 85 92 93 sylanbrc ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 𝑧 ∈ ( 0 [,] +∞ ) )
95 62 ffvelrni ( -𝑒 𝑧 ∈ ( 0 [,] +∞ ) → ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) )
96 94 95 syl ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) )
97 58 96 sselid ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) )
98 iccssre ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 [,] 1 ) ⊆ ℝ )
99 11 12 98 mp2an ( - 1 [,] 1 ) ⊆ ℝ
100 99 97 sselid ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ )
101 iccneg ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ ) → ( ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ↔ - ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) )
102 11 12 101 mp3an12 ( ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ → ( ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ↔ - ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) )
103 100 102 syl ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ↔ - ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) )
104 97 103 mpbid ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → - ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) )
105 negneg1e1 - - 1 = 1
106 105 oveq2i ( - 1 [,] - - 1 ) = ( - 1 [,] 1 )
107 104 106 eleqtrdi ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → - ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) )
108 xle0neg2 ( 𝑧 ∈ ℝ* → ( 0 ≤ 𝑧 ↔ -𝑒 𝑧 ≤ 0 ) )
109 108 notbid ( 𝑧 ∈ ℝ* → ( ¬ 0 ≤ 𝑧 ↔ ¬ -𝑒 𝑧 ≤ 0 ) )
110 109 biimpa ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ -𝑒 𝑧 ≤ 0 )
111 f1ocnvfv2 ( ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ -𝑒 𝑧 ∈ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ ( 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 )
112 22 94 111 sylancr ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ ( 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 )
113 0elunit 0 ∈ ( 0 [,] 1 )
114 ax-1ne0 1 ≠ 0
115 neeq2 ( 𝑥 = 0 → ( 1 ≠ 𝑥 ↔ 1 ≠ 0 ) )
116 114 115 mpbiri ( 𝑥 = 0 → 1 ≠ 𝑥 )
117 116 necomd ( 𝑥 = 0 → 𝑥 ≠ 1 )
118 ifnefalse ( 𝑥 ≠ 1 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 / ( 1 − 𝑥 ) ) )
119 117 118 syl ( 𝑥 = 0 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 / ( 1 − 𝑥 ) ) )
120 id ( 𝑥 = 0 → 𝑥 = 0 )
121 oveq2 ( 𝑥 = 0 → ( 1 − 𝑥 ) = ( 1 − 0 ) )
122 1m0e1 ( 1 − 0 ) = 1
123 121 122 eqtrdi ( 𝑥 = 0 → ( 1 − 𝑥 ) = 1 )
124 120 123 oveq12d ( 𝑥 = 0 → ( 𝑥 / ( 1 − 𝑥 ) ) = ( 0 / 1 ) )
125 ax-1cn 1 ∈ ℂ
126 125 114 div0i ( 0 / 1 ) = 0
127 124 126 eqtrdi ( 𝑥 = 0 → ( 𝑥 / ( 1 − 𝑥 ) ) = 0 )
128 119 127 eqtrd ( 𝑥 = 0 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = 0 )
129 c0ex 0 ∈ V
130 128 1 129 fvmpt ( 0 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 0 ) = 0 )
131 113 130 ax-mp ( 𝐹 ‘ 0 ) = 0
132 131 a1i ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ 0 ) = 0 )
133 112 132 breq12d ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( 𝐹 ‘ ( 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ↔ -𝑒 𝑧 ≤ 0 ) )
134 110 133 mtbird ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ ( 𝐹 ‘ ( 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) )
135 eqid ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
136 1 135 iccpnfhmeo ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ 𝐹 ∈ ( II Homeo ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) )
137 136 simpli 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) )
138 iccssxr ( 0 [,] 1 ) ⊆ ℝ*
139 138 10 pm3.2i ( ( 0 [,] 1 ) ⊆ ℝ* ∧ ( 0 [,] +∞ ) ⊆ ℝ* )
140 leisorel ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( ( 0 [,] 1 ) ⊆ ℝ* ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) ∧ ( ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ ( 𝐹 ‘ ( 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) )
141 137 139 140 mp3an12 ( ( ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ ( 𝐹 ‘ ( 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) )
142 96 113 141 sylancl ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ ( 𝐹 ‘ ( 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) )
143 134 142 mtbird ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ ( 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 )
144 100 le0neg1d ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ 0 ≤ - ( 𝐹 ‘ -𝑒 𝑧 ) ) )
145 143 144 mtbid ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ 0 ≤ - ( 𝐹 ‘ -𝑒 𝑧 ) )
146 unitssre ( 0 [,] 1 ) ⊆ ℝ
147 146 96 sselid ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ )
148 147 recnd ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ℂ )
149 148 negnegd ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → - - ( 𝐹 ‘ -𝑒 𝑧 ) = ( 𝐹 ‘ -𝑒 𝑧 ) )
150 149 fveq2d ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) = ( 𝐹 ‘ ( 𝐹 ‘ -𝑒 𝑧 ) ) )
151 150 112 eqtrd ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 )
152 xnegeq ( ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 → -𝑒 ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 -𝑒 𝑧 )
153 151 152 syl ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 -𝑒 𝑧 )
154 xnegneg ( 𝑧 ∈ ℝ* → -𝑒 -𝑒 𝑧 = 𝑧 )
155 154 adantr ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 -𝑒 𝑧 = 𝑧 )
156 153 155 eqtr2d ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → 𝑧 = -𝑒 ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) )
157 breq2 ( 𝑦 = - ( 𝐹 ‘ -𝑒 𝑧 ) → ( 0 ≤ 𝑦 ↔ 0 ≤ - ( 𝐹 ‘ -𝑒 𝑧 ) ) )
158 157 notbid ( 𝑦 = - ( 𝐹 ‘ -𝑒 𝑧 ) → ( ¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ - ( 𝐹 ‘ -𝑒 𝑧 ) ) )
159 negeq ( 𝑦 = - ( 𝐹 ‘ -𝑒 𝑧 ) → - 𝑦 = - - ( 𝐹 ‘ -𝑒 𝑧 ) )
160 159 fveq2d ( 𝑦 = - ( 𝐹 ‘ -𝑒 𝑧 ) → ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) )
161 xnegeq ( ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) )
162 160 161 syl ( 𝑦 = - ( 𝐹 ‘ -𝑒 𝑧 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) )
163 162 eqeq2d ( 𝑦 = - ( 𝐹 ‘ -𝑒 𝑧 ) → ( 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ↔ 𝑧 = -𝑒 ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) ) )
164 158 163 anbi12d ( 𝑦 = - ( 𝐹 ‘ -𝑒 𝑧 ) → ( ( ¬ 0 ≤ 𝑦𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ↔ ( ¬ 0 ≤ - ( 𝐹 ‘ -𝑒 𝑧 ) ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) ) ) )
165 164 rspcev ( ( - ( 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ∧ ( ¬ 0 ≤ - ( 𝐹 ‘ -𝑒 𝑧 ) ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - - ( 𝐹 ‘ -𝑒 𝑧 ) ) ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( ¬ 0 ≤ 𝑦𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
166 107 145 156 165 syl12anc ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( ¬ 0 ≤ 𝑦𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
167 iffalse ( ¬ 0 ≤ 𝑦 → if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = -𝑒 ( 𝐹 ‘ - 𝑦 ) )
168 167 eqeq2d ( ¬ 0 ≤ 𝑦 → ( 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ↔ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
169 168 biimpar ( ( ¬ 0 ≤ 𝑦𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) → 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
170 169 reximi ( ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( ¬ 0 ≤ 𝑦𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
171 166 170 syl ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
172 83 171 pm2.61dan ( 𝑧 ∈ ℝ* → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) )
173 51 172 mprgbir * ⊆ { 𝑧 ∣ ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) }
174 2 rnmpt ran 𝐺 = { 𝑧 ∣ ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) }
175 173 174 sseqtrri * ⊆ ran 𝐺
176 50 175 eqssi ran 𝐺 = ℝ*
177 dffo2 ( 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ* ↔ ( 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ* ∧ ran 𝐺 = ℝ* ) )
178 48 176 177 mpbir2an 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ*
179 breq1 ( ( 𝐹𝑧 ) = if ( 0 ≤ 𝑧 , ( 𝐹𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) → ( ( 𝐹𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ↔ if ( 0 ≤ 𝑧 , ( 𝐹𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) )
180 breq1 ( -𝑒 ( 𝐹 ‘ - 𝑧 ) = if ( 0 ≤ 𝑧 , ( 𝐹𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) → ( -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ↔ if ( 0 ≤ 𝑧 , ( 𝐹𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) )
181 simpl3 ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 < 𝑤 )
182 simpl1 ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ( - 1 [,] 1 ) )
183 simpr ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 0 ≤ 𝑧 )
184 breq2 ( 𝑦 = 𝑧 → ( 0 ≤ 𝑦 ↔ 0 ≤ 𝑧 ) )
185 eleq1w ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 0 [,] 1 ) ↔ 𝑧 ∈ ( 0 [,] 1 ) ) )
186 184 185 imbi12d ( 𝑦 = 𝑧 → ( ( 0 ≤ 𝑦𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( 0 ≤ 𝑧𝑧 ∈ ( 0 [,] 1 ) ) ) )
187 20 ex ( 𝑦 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑦𝑦 ∈ ( 0 [,] 1 ) ) )
188 186 187 vtoclga ( 𝑧 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑧𝑧 ∈ ( 0 [,] 1 ) ) )
189 182 183 188 sylc ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ( 0 [,] 1 ) )
190 simpl2 ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑤 ∈ ( - 1 [,] 1 ) )
191 30 a1i ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 0 ∈ ℝ )
192 99 182 sselid ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ℝ )
193 99 190 sselid ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑤 ∈ ℝ )
194 192 193 181 ltled ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧𝑤 )
195 191 192 193 183 194 letrd ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 0 ≤ 𝑤 )
196 breq2 ( 𝑦 = 𝑤 → ( 0 ≤ 𝑦 ↔ 0 ≤ 𝑤 ) )
197 eleq1w ( 𝑦 = 𝑤 → ( 𝑦 ∈ ( 0 [,] 1 ) ↔ 𝑤 ∈ ( 0 [,] 1 ) ) )
198 196 197 imbi12d ( 𝑦 = 𝑤 → ( ( 0 ≤ 𝑦𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( 0 ≤ 𝑤𝑤 ∈ ( 0 [,] 1 ) ) ) )
199 198 187 vtoclga ( 𝑤 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑤𝑤 ∈ ( 0 [,] 1 ) ) )
200 190 195 199 sylc ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑤 ∈ ( 0 [,] 1 ) )
201 isorel ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ) → ( 𝑧 < 𝑤 ↔ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ) )
202 137 201 mpan ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) → ( 𝑧 < 𝑤 ↔ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ) )
203 189 200 202 syl2anc ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → ( 𝑧 < 𝑤 ↔ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ) )
204 181 203 mpbid ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → ( 𝐹𝑧 ) < ( 𝐹𝑤 ) )
205 195 iftrued ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) = ( 𝐹𝑤 ) )
206 204 205 breqtrrd ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → ( 𝐹𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) )
207 breq2 ( ( 𝐹𝑤 ) = if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) → ( -𝑒 ( 𝐹 ‘ - 𝑧 ) < ( 𝐹𝑤 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) )
208 breq2 ( -𝑒 ( 𝐹 ‘ - 𝑤 ) = if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) → ( -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) )
209 simpl1 ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → 𝑧 ∈ ( - 1 [,] 1 ) )
210 simpr ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → ¬ 0 ≤ 𝑧 )
211 184 notbid ( 𝑦 = 𝑧 → ( ¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑧 ) )
212 negeq ( 𝑦 = 𝑧 → - 𝑦 = - 𝑧 )
213 212 eleq1d ( 𝑦 = 𝑧 → ( - 𝑦 ∈ ( 0 [,] 1 ) ↔ - 𝑧 ∈ ( 0 [,] 1 ) ) )
214 211 213 imbi12d ( 𝑦 = 𝑧 → ( ( ¬ 0 ≤ 𝑦 → - 𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( ¬ 0 ≤ 𝑧 → - 𝑧 ∈ ( 0 [,] 1 ) ) ) )
215 42 ex ( 𝑦 ∈ ( - 1 [,] 1 ) → ( ¬ 0 ≤ 𝑦 → - 𝑦 ∈ ( 0 [,] 1 ) ) )
216 214 215 vtoclga ( 𝑧 ∈ ( - 1 [,] 1 ) → ( ¬ 0 ≤ 𝑧 → - 𝑧 ∈ ( 0 [,] 1 ) ) )
217 209 210 216 sylc ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → - 𝑧 ∈ ( 0 [,] 1 ) )
218 217 adantr ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → - 𝑧 ∈ ( 0 [,] 1 ) )
219 24 ffvelrni ( - 𝑧 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ( 0 [,] +∞ ) )
220 218 219 syl ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ( 0 [,] +∞ ) )
221 10 220 sselid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* )
222 221 xnegcld ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* )
223 86 a1i ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 ∈ ℝ* )
224 simpll2 ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑤 ∈ ( - 1 [,] 1 ) )
225 simpr ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 ≤ 𝑤 )
226 224 225 199 sylc ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑤 ∈ ( 0 [,] 1 ) )
227 24 ffvelrni ( 𝑤 ∈ ( 0 [,] 1 ) → ( 𝐹𝑤 ) ∈ ( 0 [,] +∞ ) )
228 226 227 syl ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹𝑤 ) ∈ ( 0 [,] +∞ ) )
229 10 228 sselid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹𝑤 ) ∈ ℝ* )
230 210 adantr ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ¬ 0 ≤ 𝑧 )
231 simpll1 ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑧 ∈ ( - 1 [,] 1 ) )
232 99 231 sselid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑧 ∈ ℝ )
233 ltnle ( ( 𝑧 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑧 < 0 ↔ ¬ 0 ≤ 𝑧 ) )
234 232 30 233 sylancl ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝑧 < 0 ↔ ¬ 0 ≤ 𝑧 ) )
235 230 234 mpbird ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑧 < 0 )
236 232 lt0neg1d ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝑧 < 0 ↔ 0 < - 𝑧 ) )
237 235 236 mpbid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 < - 𝑧 )
238 isorel ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( 0 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) ) → ( 0 < - 𝑧 ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) )
239 137 238 mpan ( ( 0 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) → ( 0 < - 𝑧 ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) )
240 113 218 239 sylancr ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 0 < - 𝑧 ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) )
241 237 240 mpbid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) )
242 131 241 eqbrtrrid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 < ( 𝐹 ‘ - 𝑧 ) )
243 xlt0neg2 ( ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* → ( 0 < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < 0 ) )
244 221 243 syl ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 0 < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < 0 ) )
245 242 244 mpbid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < 0 )
246 elxrge0 ( ( 𝐹𝑤 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹𝑤 ) ) )
247 246 simprbi ( ( 𝐹𝑤 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹𝑤 ) )
248 228 247 syl ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 ≤ ( 𝐹𝑤 ) )
249 222 223 229 245 248 xrltletrd ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < ( 𝐹𝑤 ) )
250 simpll3 ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑧 < 𝑤 )
251 simpll1 ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑧 ∈ ( - 1 [,] 1 ) )
252 99 251 sselid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑧 ∈ ℝ )
253 simpll2 ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑤 ∈ ( - 1 [,] 1 ) )
254 99 253 sselid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑤 ∈ ℝ )
255 252 254 ltnegd ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝑧 < 𝑤 ↔ - 𝑤 < - 𝑧 ) )
256 250 255 mpbid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → - 𝑤 < - 𝑧 )
257 simpr ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ¬ 0 ≤ 𝑤 )
258 196 notbid ( 𝑦 = 𝑤 → ( ¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑤 ) )
259 negeq ( 𝑦 = 𝑤 → - 𝑦 = - 𝑤 )
260 259 eleq1d ( 𝑦 = 𝑤 → ( - 𝑦 ∈ ( 0 [,] 1 ) ↔ - 𝑤 ∈ ( 0 [,] 1 ) ) )
261 258 260 imbi12d ( 𝑦 = 𝑤 → ( ( ¬ 0 ≤ 𝑦 → - 𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( ¬ 0 ≤ 𝑤 → - 𝑤 ∈ ( 0 [,] 1 ) ) ) )
262 261 215 vtoclga ( 𝑤 ∈ ( - 1 [,] 1 ) → ( ¬ 0 ≤ 𝑤 → - 𝑤 ∈ ( 0 [,] 1 ) ) )
263 253 257 262 sylc ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → - 𝑤 ∈ ( 0 [,] 1 ) )
264 217 adantr ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → - 𝑧 ∈ ( 0 [,] 1 ) )
265 isorel ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( - 𝑤 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) ) → ( - 𝑤 < - 𝑧 ↔ ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) )
266 137 265 mpan ( ( - 𝑤 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) → ( - 𝑤 < - 𝑧 ↔ ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) )
267 263 264 266 syl2anc ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( - 𝑤 < - 𝑧 ↔ ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) )
268 256 267 mpbid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) )
269 24 ffvelrni ( - 𝑤 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ - 𝑤 ) ∈ ( 0 [,] +∞ ) )
270 263 269 syl ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑤 ) ∈ ( 0 [,] +∞ ) )
271 10 270 sselid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑤 ) ∈ ℝ* )
272 264 219 syl ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ( 0 [,] +∞ ) )
273 10 272 sselid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* )
274 xltneg ( ( ( 𝐹 ‘ - 𝑤 ) ∈ ℝ* ∧ ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* ) → ( ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ) )
275 271 273 274 syl2anc ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ) )
276 268 275 mpbid ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) )
277 207 208 249 276 ifbothda ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) )
278 179 180 206 277 ifbothda ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) → if ( 0 ≤ 𝑧 , ( 𝐹𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) )
279 278 3expia ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ) → ( 𝑧 < 𝑤 → if ( 0 ≤ 𝑧 , ( 𝐹𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) )
280 fveq2 ( 𝑦 = 𝑧 → ( 𝐹𝑦 ) = ( 𝐹𝑧 ) )
281 212 fveq2d ( 𝑦 = 𝑧 → ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑧 ) )
282 xnegeq ( ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑧 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑧 ) )
283 281 282 syl ( 𝑦 = 𝑧 → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑧 ) )
284 184 280 283 ifbieq12d ( 𝑦 = 𝑧 → if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = if ( 0 ≤ 𝑧 , ( 𝐹𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) )
285 fvex ( 𝐹𝑧 ) ∈ V
286 xnegex -𝑒 ( 𝐹 ‘ - 𝑧 ) ∈ V
287 285 286 ifex if ( 0 ≤ 𝑧 , ( 𝐹𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) ∈ V
288 284 2 287 fvmpt ( 𝑧 ∈ ( - 1 [,] 1 ) → ( 𝐺𝑧 ) = if ( 0 ≤ 𝑧 , ( 𝐹𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) )
289 fveq2 ( 𝑦 = 𝑤 → ( 𝐹𝑦 ) = ( 𝐹𝑤 ) )
290 259 fveq2d ( 𝑦 = 𝑤 → ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑤 ) )
291 xnegeq ( ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑤 ) )
292 290 291 syl ( 𝑦 = 𝑤 → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑤 ) )
293 196 289 292 ifbieq12d ( 𝑦 = 𝑤 → if ( 0 ≤ 𝑦 , ( 𝐹𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) )
294 fvex ( 𝐹𝑤 ) ∈ V
295 xnegex -𝑒 ( 𝐹 ‘ - 𝑤 ) ∈ V
296 294 295 ifex if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ∈ V
297 293 2 296 fvmpt ( 𝑤 ∈ ( - 1 [,] 1 ) → ( 𝐺𝑤 ) = if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) )
298 288 297 breqan12d ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ) → ( ( 𝐺𝑧 ) < ( 𝐺𝑤 ) ↔ if ( 0 ≤ 𝑧 , ( 𝐹𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) )
299 279 298 sylibrd ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ) → ( 𝑧 < 𝑤 → ( 𝐺𝑧 ) < ( 𝐺𝑤 ) ) )
300 299 rgen2 𝑧 ∈ ( - 1 [,] 1 ) ∀ 𝑤 ∈ ( - 1 [,] 1 ) ( 𝑧 < 𝑤 → ( 𝐺𝑧 ) < ( 𝐺𝑤 ) )
301 soisoi ( ( ( < Or ( - 1 [,] 1 ) ∧ < Po ℝ* ) ∧ ( 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ* ∧ ∀ 𝑧 ∈ ( - 1 [,] 1 ) ∀ 𝑤 ∈ ( - 1 [,] 1 ) ( 𝑧 < 𝑤 → ( 𝐺𝑧 ) < ( 𝐺𝑤 ) ) ) ) → 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) )
302 7 9 178 300 301 mp4an 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* )
303 letsr ≤ ∈ TosetRel
304 303 elexi ≤ ∈ V
305 304 inex1 ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ∈ V
306 ssid * ⊆ ℝ*
307 leiso ( ( ( - 1 [,] 1 ) ⊆ ℝ* ∧ ℝ* ⊆ ℝ* ) → ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ↔ 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ) )
308 4 306 307 mp2an ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ↔ 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) )
309 302 308 mpbi 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* )
310 isores1 ( 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ↔ 𝐺 Isom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) , ≤ ( ( - 1 [,] 1 ) , ℝ* ) )
311 309 310 mpbi 𝐺 Isom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) , ≤ ( ( - 1 [,] 1 ) , ℝ* )
312 tsrps ( ≤ ∈ TosetRel → ≤ ∈ PosetRel )
313 303 312 ax-mp ≤ ∈ PosetRel
314 ledm * = dom ≤
315 314 psssdm ( ( ≤ ∈ PosetRel ∧ ( - 1 [,] 1 ) ⊆ ℝ* ) → dom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) = ( - 1 [,] 1 ) )
316 313 4 315 mp2an dom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) = ( - 1 [,] 1 )
317 316 eqcomi ( - 1 [,] 1 ) = dom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) )
318 317 314 ordthmeo ( ( ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ∈ V ∧ ≤ ∈ TosetRel ∧ 𝐺 Isom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ) → 𝐺 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ≤ ) ) )
319 305 303 311 318 mp3an 𝐺 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ≤ ) )
320 eqid ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ )
321 3 320 xrrest2 ( ( - 1 [,] 1 ) ⊆ ℝ → ( 𝐽t ( - 1 [,] 1 ) ) = ( ( ordTop ‘ ≤ ) ↾t ( - 1 [,] 1 ) ) )
322 99 321 ax-mp ( 𝐽t ( - 1 [,] 1 ) ) = ( ( ordTop ‘ ≤ ) ↾t ( - 1 [,] 1 ) )
323 ordtresticc ( ( ordTop ‘ ≤ ) ↾t ( - 1 [,] 1 ) ) = ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) )
324 322 323 eqtri ( 𝐽t ( - 1 [,] 1 ) ) = ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) )
325 324 oveq1i ( ( 𝐽t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) = ( ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ≤ ) )
326 319 325 eleqtrri 𝐺 ∈ ( ( 𝐽t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) )
327 302 326 pm3.2i ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ∧ 𝐺 ∈ ( ( 𝐽t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) )