Metamath Proof Explorer


Theorem iccneg

Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007)

Ref Expression
Assertion iccneg ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 renegcl ( 𝐶 ∈ ℝ → - 𝐶 ∈ ℝ )
2 ax-1 ( 𝐶 ∈ ℝ → ( - 𝐶 ∈ ℝ → 𝐶 ∈ ℝ ) )
3 1 2 impbid2 ( 𝐶 ∈ ℝ → ( 𝐶 ∈ ℝ ↔ - 𝐶 ∈ ℝ ) )
4 3 3ad2ant3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ℝ ↔ - 𝐶 ∈ ℝ ) )
5 ancom ( ( 𝐶𝐵𝐴𝐶 ) ↔ ( 𝐴𝐶𝐶𝐵 ) )
6 leneg ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶𝐵 ↔ - 𝐵 ≤ - 𝐶 ) )
7 6 ancoms ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶𝐵 ↔ - 𝐵 ≤ - 𝐶 ) )
8 7 3adant1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶𝐵 ↔ - 𝐵 ≤ - 𝐶 ) )
9 leneg ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴𝐶 ↔ - 𝐶 ≤ - 𝐴 ) )
10 9 3adant2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴𝐶 ↔ - 𝐶 ≤ - 𝐴 ) )
11 8 10 anbi12d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶𝐵𝐴𝐶 ) ↔ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) )
12 5 11 bitr3id ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐶𝐶𝐵 ) ↔ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) )
13 4 12 anbi12d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ ( 𝐴𝐶𝐶𝐵 ) ) ↔ ( - 𝐶 ∈ ℝ ∧ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) )
14 elicc2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵 ) ) )
15 14 3adant3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵 ) ) )
16 3anass ( ( 𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐴𝐶𝐶𝐵 ) ) )
17 15 16 bitrdi ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐴𝐶𝐶𝐵 ) ) ) )
18 renegcl ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ )
19 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
20 elicc2 ( ( - 𝐵 ∈ ℝ ∧ - 𝐴 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) )
21 18 19 20 syl2anr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) )
22 21 3adant3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) )
23 3anass ( ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) )
24 22 23 bitrdi ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) )
25 13 17 24 3bitr4d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ) )