| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
⊢ ( 𝐶 ∈ ℝ → - 𝐶 ∈ ℝ ) |
| 2 |
|
ax-1 |
⊢ ( 𝐶 ∈ ℝ → ( - 𝐶 ∈ ℝ → 𝐶 ∈ ℝ ) ) |
| 3 |
1 2
|
impbid2 |
⊢ ( 𝐶 ∈ ℝ → ( 𝐶 ∈ ℝ ↔ - 𝐶 ∈ ℝ ) ) |
| 4 |
3
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ℝ ↔ - 𝐶 ∈ ℝ ) ) |
| 5 |
|
ancom |
⊢ ( ( 𝐶 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 6 |
|
leneg |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝐶 ) ) |
| 7 |
6
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝐶 ) ) |
| 8 |
7
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝐶 ) ) |
| 9 |
|
leneg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐶 ↔ - 𝐶 ≤ - 𝐴 ) ) |
| 10 |
9
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐶 ↔ - 𝐶 ≤ - 𝐴 ) ) |
| 11 |
8 10
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶 ) ↔ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) |
| 12 |
5 11
|
bitr3id |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ↔ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) |
| 13 |
4 12
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ↔ ( - 𝐶 ∈ ℝ ∧ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) ) |
| 14 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 16 |
|
3anass |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 17 |
15 16
|
bitrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) ) |
| 18 |
|
renegcl |
⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) |
| 19 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 20 |
|
elicc2 |
⊢ ( ( - 𝐵 ∈ ℝ ∧ - 𝐴 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) |
| 21 |
18 19 20
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) |
| 22 |
21
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) |
| 23 |
|
3anass |
⊢ ( ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) |
| 24 |
22 23
|
bitrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) ) |
| 25 |
13 17 24
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ) ) |