| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 2 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 3 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 4 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 5 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 6 | 1 5 2 | lttri | ⊢ ( ( - 1  <  0  ∧  0  <  1 )  →  - 1  <  1 ) | 
						
							| 7 | 3 4 6 | mp2an | ⊢ - 1  <  1 | 
						
							| 8 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( ( 𝑥  ·  1 )  +  ( ( 1  −  𝑥 )  ·  - 1 ) ) )  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( ( 𝑥  ·  1 )  +  ( ( 1  −  𝑥 )  ·  - 1 ) ) ) | 
						
							| 10 | 8 9 | icchmeo | ⊢ ( ( - 1  ∈  ℝ  ∧  1  ∈  ℝ  ∧  - 1  <  1 )  →  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( ( 𝑥  ·  1 )  +  ( ( 1  −  𝑥 )  ·  - 1 ) ) )  ∈  ( II Homeo ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) ) ) ) | 
						
							| 11 | 1 2 7 10 | mp3an | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( ( 𝑥  ·  1 )  +  ( ( 1  −  𝑥 )  ·  - 1 ) ) )  ∈  ( II Homeo ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) ) ) | 
						
							| 12 |  | hmphi | ⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( ( 𝑥  ·  1 )  +  ( ( 1  −  𝑥 )  ·  - 1 ) ) )  ∈  ( II Homeo ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) ) )  →  II  ≃  ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ II  ≃  ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑦  ∈  ( - 1 [,] 1 )  ↦  if ( 0  ≤  𝑦 ,  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ 𝑦 ) ,  -𝑒 ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ - 𝑦 ) ) )  =  ( 𝑦  ∈  ( - 1 [,] 1 )  ↦  if ( 0  ≤  𝑦 ,  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ 𝑦 ) ,  -𝑒 ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) | 
						
							| 16 | 14 15 8 | xrhmeo | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ↦  if ( 0  ≤  𝑦 ,  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ 𝑦 ) ,  -𝑒 ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ - 𝑦 ) ) )  Isom   <  ,   <  ( ( - 1 [,] 1 ) ,  ℝ* )  ∧  ( 𝑦  ∈  ( - 1 [,] 1 )  ↦  if ( 0  ≤  𝑦 ,  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ 𝑦 ) ,  -𝑒 ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ - 𝑦 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) ) Homeo ( ordTop ‘  ≤  ) ) ) | 
						
							| 17 | 16 | simpri | ⊢ ( 𝑦  ∈  ( - 1 [,] 1 )  ↦  if ( 0  ≤  𝑦 ,  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ 𝑦 ) ,  -𝑒 ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ - 𝑦 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) ) Homeo ( ordTop ‘  ≤  ) ) | 
						
							| 18 |  | hmphi | ⊢ ( ( 𝑦  ∈  ( - 1 [,] 1 )  ↦  if ( 0  ≤  𝑦 ,  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ 𝑦 ) ,  -𝑒 ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ‘ - 𝑦 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) ) Homeo ( ordTop ‘  ≤  ) )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) )  ≃  ( ordTop ‘  ≤  ) ) | 
						
							| 19 | 17 18 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) )  ≃  ( ordTop ‘  ≤  ) | 
						
							| 20 |  | hmphtr | ⊢ ( ( II  ≃  ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) )  ∧  ( ( TopOpen ‘ ℂfld )  ↾t  ( - 1 [,] 1 ) )  ≃  ( ordTop ‘  ≤  ) )  →  II  ≃  ( ordTop ‘  ≤  ) ) | 
						
							| 21 | 13 19 20 | mp2an | ⊢ II  ≃  ( ordTop ‘  ≤  ) |