| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icchmeo.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 2 |
|
icchmeo.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) |
| 3 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 5 |
1
|
dfii3 |
⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |
| 6 |
5
|
eqcomi |
⊢ ( 𝐽 ↾t ( 0 [,] 1 ) ) = II |
| 7 |
6
|
oveq2i |
⊢ ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) = ( II Cn II ) |
| 8 |
1
|
cnfldtop |
⊢ 𝐽 ∈ Top |
| 9 |
|
cnrest2r |
⊢ ( 𝐽 ∈ Top → ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ⊆ ( II Cn 𝐽 ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ⊆ ( II Cn 𝐽 ) |
| 11 |
7 10
|
eqsstrri |
⊢ ( II Cn II ) ⊆ ( II Cn 𝐽 ) |
| 12 |
4
|
cnmptid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( II Cn II ) ) |
| 13 |
11 12
|
sselid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( II Cn 𝐽 ) ) |
| 14 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 15 |
14
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 16 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 17 |
16
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 18 |
4 15 17
|
cnmptc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐵 ) ∈ ( II Cn 𝐽 ) ) |
| 19 |
1
|
mpomulcn |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 20 |
19
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 21 |
|
oveq12 |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝐵 ) → ( 𝑢 · 𝑣 ) = ( 𝑥 · 𝐵 ) ) |
| 22 |
4 13 18 15 15 20 21
|
cnmpt12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝐵 ) ) ∈ ( II Cn 𝐽 ) ) |
| 23 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 1 ∈ ℂ ) |
| 24 |
4 15 23
|
cnmptc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 1 ) ∈ ( II Cn 𝐽 ) ) |
| 25 |
1
|
subcn |
⊢ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 26 |
25
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 27 |
4 24 13 26
|
cnmpt12f |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn 𝐽 ) ) |
| 28 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
| 29 |
28
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℂ ) |
| 30 |
4 15 29
|
cnmptc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) ∈ ( II Cn 𝐽 ) ) |
| 31 |
|
oveq12 |
⊢ ( ( 𝑢 = ( 1 − 𝑥 ) ∧ 𝑣 = 𝐴 ) → ( 𝑢 · 𝑣 ) = ( ( 1 − 𝑥 ) · 𝐴 ) ) |
| 32 |
4 27 30 15 15 20 31
|
cnmpt12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑥 ) · 𝐴 ) ) ∈ ( II Cn 𝐽 ) ) |
| 33 |
1
|
addcn |
⊢ + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 34 |
33
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 35 |
4 22 32 34
|
cnmpt12f |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) ∈ ( II Cn 𝐽 ) ) |
| 36 |
2 35
|
eqeltrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 37 |
2
|
iccf1o |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 38 |
37
|
simpld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ) |
| 39 |
|
f1of |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 40 |
|
frn |
⊢ ( 𝐹 : ( 0 [,] 1 ) ⟶ ( 𝐴 [,] 𝐵 ) → ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 41 |
38 39 40
|
3syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 42 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 43 |
42
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 44 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 45 |
43 44
|
sstrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 46 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐹 ∈ ( II Cn 𝐽 ) ↔ 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 47 |
14 41 45 46
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐹 ∈ ( II Cn 𝐽 ) ↔ 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 48 |
36 47
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 49 |
37
|
simprd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 50 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 51 |
14 45 50
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 52 |
|
cnrest2r |
⊢ ( 𝐽 ∈ Top → ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ⊆ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 53 |
8 52
|
ax-mp |
⊢ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ⊆ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) |
| 54 |
51
|
cnmptid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 55 |
53 54
|
sselid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 56 |
51 15 29
|
cnmptc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐴 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 57 |
51 55 56 26
|
cnmpt12f |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 − 𝐴 ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 58 |
|
difrp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℝ+ ) ) |
| 59 |
58
|
biimp3a |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ+ ) |
| 60 |
|
rpcnne0 |
⊢ ( ( 𝐵 − 𝐴 ) ∈ ℝ+ → ( ( 𝐵 − 𝐴 ) ∈ ℂ ∧ ( 𝐵 − 𝐴 ) ≠ 0 ) ) |
| 61 |
1
|
divccn |
⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℂ ∧ ( 𝐵 − 𝐴 ) ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 62 |
59 60 61
|
3syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 63 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 − 𝐴 ) → ( 𝑥 / ( 𝐵 − 𝐴 ) ) = ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) |
| 64 |
51 57 15 62 63
|
cnmpt11 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 65 |
49 64
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 66 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
| 67 |
66
|
eqimss2i |
⊢ ran ◡ 𝐹 ⊆ dom 𝐹 |
| 68 |
|
f1odm |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) → dom 𝐹 = ( 0 [,] 1 ) ) |
| 69 |
38 68
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → dom 𝐹 = ( 0 [,] 1 ) ) |
| 70 |
67 69
|
sseqtrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ran ◡ 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 71 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 72 |
71
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 0 [,] 1 ) ⊆ ℂ ) |
| 73 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran ◡ 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) ) |
| 74 |
14 70 72 73
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) ) |
| 75 |
65 74
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) |
| 76 |
5
|
oveq2i |
⊢ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) = ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) |
| 77 |
75 76
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) ) |
| 78 |
|
ishmeo |
⊢ ( 𝐹 ∈ ( II Homeo ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ↔ ( 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ∧ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) ) ) |
| 79 |
48 77 78
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Homeo ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |