| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icchmeo.j |
|
| 2 |
|
icchmeo.f |
|
| 3 |
|
iitopon |
|
| 4 |
3
|
a1i |
|
| 5 |
1
|
dfii3 |
|
| 6 |
5
|
eqcomi |
|
| 7 |
6
|
oveq2i |
|
| 8 |
1
|
cnfldtop |
|
| 9 |
|
cnrest2r |
|
| 10 |
8 9
|
ax-mp |
|
| 11 |
7 10
|
eqsstrri |
|
| 12 |
4
|
cnmptid |
|
| 13 |
11 12
|
sselid |
|
| 14 |
1
|
cnfldtopon |
|
| 15 |
14
|
a1i |
|
| 16 |
|
simp2 |
|
| 17 |
16
|
recnd |
|
| 18 |
4 15 17
|
cnmptc |
|
| 19 |
1
|
mpomulcn |
|
| 20 |
19
|
a1i |
|
| 21 |
|
oveq12 |
|
| 22 |
4 13 18 15 15 20 21
|
cnmpt12 |
|
| 23 |
|
1cnd |
|
| 24 |
4 15 23
|
cnmptc |
|
| 25 |
1
|
subcn |
|
| 26 |
25
|
a1i |
|
| 27 |
4 24 13 26
|
cnmpt12f |
|
| 28 |
|
simp1 |
|
| 29 |
28
|
recnd |
|
| 30 |
4 15 29
|
cnmptc |
|
| 31 |
|
oveq12 |
|
| 32 |
4 27 30 15 15 20 31
|
cnmpt12 |
|
| 33 |
1
|
addcn |
|
| 34 |
33
|
a1i |
|
| 35 |
4 22 32 34
|
cnmpt12f |
|
| 36 |
2 35
|
eqeltrid |
|
| 37 |
2
|
iccf1o |
|
| 38 |
37
|
simpld |
|
| 39 |
|
f1of |
|
| 40 |
|
frn |
|
| 41 |
38 39 40
|
3syl |
|
| 42 |
|
iccssre |
|
| 43 |
42
|
3adant3 |
|
| 44 |
|
ax-resscn |
|
| 45 |
43 44
|
sstrdi |
|
| 46 |
|
cnrest2 |
|
| 47 |
14 41 45 46
|
mp3an2i |
|
| 48 |
36 47
|
mpbid |
|
| 49 |
37
|
simprd |
|
| 50 |
|
resttopon |
|
| 51 |
14 45 50
|
sylancr |
|
| 52 |
|
cnrest2r |
|
| 53 |
8 52
|
ax-mp |
|
| 54 |
51
|
cnmptid |
|
| 55 |
53 54
|
sselid |
|
| 56 |
51 15 29
|
cnmptc |
|
| 57 |
51 55 56 26
|
cnmpt12f |
|
| 58 |
|
difrp |
|
| 59 |
58
|
biimp3a |
|
| 60 |
|
rpcnne0 |
|
| 61 |
1
|
divccn |
|
| 62 |
59 60 61
|
3syl |
|
| 63 |
|
oveq1 |
|
| 64 |
51 57 15 62 63
|
cnmpt11 |
|
| 65 |
49 64
|
eqeltrd |
|
| 66 |
|
dfdm4 |
|
| 67 |
66
|
eqimss2i |
|
| 68 |
|
f1odm |
|
| 69 |
38 68
|
syl |
|
| 70 |
67 69
|
sseqtrid |
|
| 71 |
|
unitsscn |
|
| 72 |
71
|
a1i |
|
| 73 |
|
cnrest2 |
|
| 74 |
14 70 72 73
|
mp3an2i |
|
| 75 |
65 74
|
mpbid |
|
| 76 |
5
|
oveq2i |
|
| 77 |
75 76
|
eleqtrrdi |
|
| 78 |
|
ishmeo |
|
| 79 |
48 77 78
|
sylanbrc |
|