| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icopnfhmeo.f |
|
| 2 |
|
0re |
|
| 3 |
|
1xr |
|
| 4 |
|
elico2 |
|
| 5 |
2 3 4
|
mp2an |
|
| 6 |
5
|
simp1bi |
|
| 7 |
5
|
simp3bi |
|
| 8 |
|
1re |
|
| 9 |
|
difrp |
|
| 10 |
6 8 9
|
sylancl |
|
| 11 |
7 10
|
mpbid |
|
| 12 |
6 11
|
rerpdivcld |
|
| 13 |
5
|
simp2bi |
|
| 14 |
6 11 13
|
divge0d |
|
| 15 |
|
elrege0 |
|
| 16 |
12 14 15
|
sylanbrc |
|
| 17 |
16
|
adantl |
|
| 18 |
|
elrege0 |
|
| 19 |
18
|
simplbi |
|
| 20 |
|
readdcl |
|
| 21 |
8 19 20
|
sylancr |
|
| 22 |
2
|
a1i |
|
| 23 |
18
|
simprbi |
|
| 24 |
19
|
ltp1d |
|
| 25 |
|
ax-1cn |
|
| 26 |
19
|
recnd |
|
| 27 |
|
addcom |
|
| 28 |
25 26 27
|
sylancr |
|
| 29 |
24 28
|
breqtrrd |
|
| 30 |
22 19 21 23 29
|
lelttrd |
|
| 31 |
21 30
|
elrpd |
|
| 32 |
19 31
|
rerpdivcld |
|
| 33 |
|
divge0 |
|
| 34 |
19 23 21 30 33
|
syl22anc |
|
| 35 |
21
|
recnd |
|
| 36 |
35
|
mulridd |
|
| 37 |
29 36
|
breqtrrd |
|
| 38 |
8
|
a1i |
|
| 39 |
|
ltdivmul |
|
| 40 |
19 38 21 30 39
|
syl112anc |
|
| 41 |
37 40
|
mpbird |
|
| 42 |
|
elico2 |
|
| 43 |
2 3 42
|
mp2an |
|
| 44 |
32 34 41 43
|
syl3anbrc |
|
| 45 |
44
|
adantl |
|
| 46 |
26
|
adantl |
|
| 47 |
6
|
adantr |
|
| 48 |
47
|
recnd |
|
| 49 |
48 46
|
mulcld |
|
| 50 |
46 49 48
|
subadd2d |
|
| 51 |
|
1cnd |
|
| 52 |
51 48 46
|
subdird |
|
| 53 |
46
|
mullidd |
|
| 54 |
53
|
oveq1d |
|
| 55 |
52 54
|
eqtrd |
|
| 56 |
55
|
eqeq1d |
|
| 57 |
48 51 46
|
adddid |
|
| 58 |
48
|
mulridd |
|
| 59 |
58
|
oveq1d |
|
| 60 |
57 59
|
eqtrd |
|
| 61 |
60
|
eqeq1d |
|
| 62 |
50 56 61
|
3bitr4rd |
|
| 63 |
|
eqcom |
|
| 64 |
|
eqcom |
|
| 65 |
62 63 64
|
3bitr4g |
|
| 66 |
35
|
adantl |
|
| 67 |
31
|
adantl |
|
| 68 |
67
|
rpne0d |
|
| 69 |
46 48 66 68
|
divmul3d |
|
| 70 |
11
|
adantr |
|
| 71 |
70
|
rpcnd |
|
| 72 |
70
|
rpne0d |
|
| 73 |
48 46 71 72
|
divmul2d |
|
| 74 |
65 69 73
|
3bitr4d |
|
| 75 |
|
eqcom |
|
| 76 |
|
eqcom |
|
| 77 |
74 75 76
|
3bitr4g |
|
| 78 |
77
|
adantl |
|
| 79 |
1 17 45 78
|
f1ocnv2d |
|
| 80 |
79
|
mptru |
|