Metamath Proof Explorer


Theorem icopnfcnv

Description: Define a bijection from [ 0 , 1 ) to [ 0 , +oo ) . (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypothesis icopnfhmeo.f F=x01x1x
Assertion icopnfcnv F:011-1 onto0+∞F-1=y0+∞y1+y

Proof

Step Hyp Ref Expression
1 icopnfhmeo.f F=x01x1x
2 0re 0
3 1xr 1*
4 elico2 01*x01x0xx<1
5 2 3 4 mp2an x01x0xx<1
6 5 simp1bi x01x
7 5 simp3bi x01x<1
8 1re 1
9 difrp x1x<11x+
10 6 8 9 sylancl x01x<11x+
11 7 10 mpbid x011x+
12 6 11 rerpdivcld x01x1x
13 5 simp2bi x010x
14 6 11 13 divge0d x010x1x
15 elrege0 x1x0+∞x1x0x1x
16 12 14 15 sylanbrc x01x1x0+∞
17 16 adantl x01x1x0+∞
18 elrege0 y0+∞y0y
19 18 simplbi y0+∞y
20 readdcl 1y1+y
21 8 19 20 sylancr y0+∞1+y
22 2 a1i y0+∞0
23 18 simprbi y0+∞0y
24 19 ltp1d y0+∞y<y+1
25 ax-1cn 1
26 19 recnd y0+∞y
27 addcom 1y1+y=y+1
28 25 26 27 sylancr y0+∞1+y=y+1
29 24 28 breqtrrd y0+∞y<1+y
30 22 19 21 23 29 lelttrd y0+∞0<1+y
31 21 30 elrpd y0+∞1+y+
32 19 31 rerpdivcld y0+∞y1+y
33 divge0 y0y1+y0<1+y0y1+y
34 19 23 21 30 33 syl22anc y0+∞0y1+y
35 21 recnd y0+∞1+y
36 35 mulridd y0+∞1+y1=1+y
37 29 36 breqtrrd y0+∞y<1+y1
38 8 a1i y0+∞1
39 ltdivmul y11+y0<1+yy1+y<1y<1+y1
40 19 38 21 30 39 syl112anc y0+∞y1+y<1y<1+y1
41 37 40 mpbird y0+∞y1+y<1
42 elico2 01*y1+y01y1+y0y1+yy1+y<1
43 2 3 42 mp2an y1+y01y1+y0y1+yy1+y<1
44 32 34 41 43 syl3anbrc y0+∞y1+y01
45 44 adantl y0+∞y1+y01
46 26 adantl x01y0+∞y
47 6 adantr x01y0+∞x
48 47 recnd x01y0+∞x
49 48 46 mulcld x01y0+∞xy
50 46 49 48 subadd2d x01y0+∞yxy=xx+xy=y
51 1cnd x01y0+∞1
52 51 48 46 subdird x01y0+∞1xy=1yxy
53 46 mullidd x01y0+∞1y=y
54 53 oveq1d x01y0+∞1yxy=yxy
55 52 54 eqtrd x01y0+∞1xy=yxy
56 55 eqeq1d x01y0+∞1xy=xyxy=x
57 48 51 46 adddid x01y0+∞x1+y=x1+xy
58 48 mulridd x01y0+∞x1=x
59 58 oveq1d x01y0+∞x1+xy=x+xy
60 57 59 eqtrd x01y0+∞x1+y=x+xy
61 60 eqeq1d x01y0+∞x1+y=yx+xy=y
62 50 56 61 3bitr4rd x01y0+∞x1+y=y1xy=x
63 eqcom y=x1+yx1+y=y
64 eqcom x=1xy1xy=x
65 62 63 64 3bitr4g x01y0+∞y=x1+yx=1xy
66 35 adantl x01y0+∞1+y
67 31 adantl x01y0+∞1+y+
68 67 rpne0d x01y0+∞1+y0
69 46 48 66 68 divmul3d x01y0+∞y1+y=xy=x1+y
70 11 adantr x01y0+∞1x+
71 70 rpcnd x01y0+∞1x
72 70 rpne0d x01y0+∞1x0
73 48 46 71 72 divmul2d x01y0+∞x1x=yx=1xy
74 65 69 73 3bitr4d x01y0+∞y1+y=xx1x=y
75 eqcom x=y1+yy1+y=x
76 eqcom y=x1xx1x=y
77 74 75 76 3bitr4g x01y0+∞x=y1+yy=x1x
78 77 adantl x01y0+∞x=y1+yy=x1x
79 1 17 45 78 f1ocnv2d F:011-1 onto0+∞F-1=y0+∞y1+y
80 79 mptru F:011-1 onto0+∞F-1=y0+∞y1+y