| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 2 |  | 1re |  |-  1 e. RR | 
						
							| 3 |  | neg1lt0 |  |-  -u 1 < 0 | 
						
							| 4 |  | 0lt1 |  |-  0 < 1 | 
						
							| 5 |  | 0re |  |-  0 e. RR | 
						
							| 6 | 1 5 2 | lttri |  |-  ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 ) | 
						
							| 7 | 3 4 6 | mp2an |  |-  -u 1 < 1 | 
						
							| 8 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 9 |  | eqid |  |-  ( x e. ( 0 [,] 1 ) |-> ( ( x x. 1 ) + ( ( 1 - x ) x. -u 1 ) ) ) = ( x e. ( 0 [,] 1 ) |-> ( ( x x. 1 ) + ( ( 1 - x ) x. -u 1 ) ) ) | 
						
							| 10 | 8 9 | icchmeo |  |-  ( ( -u 1 e. RR /\ 1 e. RR /\ -u 1 < 1 ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x x. 1 ) + ( ( 1 - x ) x. -u 1 ) ) ) e. ( II Homeo ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ) ) | 
						
							| 11 | 1 2 7 10 | mp3an |  |-  ( x e. ( 0 [,] 1 ) |-> ( ( x x. 1 ) + ( ( 1 - x ) x. -u 1 ) ) ) e. ( II Homeo ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ) | 
						
							| 12 |  | hmphi |  |-  ( ( x e. ( 0 [,] 1 ) |-> ( ( x x. 1 ) + ( ( 1 - x ) x. -u 1 ) ) ) e. ( II Homeo ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ) -> II ~= ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  II ~= ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) | 
						
							| 14 |  | eqid |  |-  ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) | 
						
							| 15 |  | eqid |  |-  ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) = ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) | 
						
							| 16 | 14 15 8 | xrhmeo |  |-  ( ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) Isom < , < ( ( -u 1 [,] 1 ) , RR* ) /\ ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) ) | 
						
							| 17 | 16 | simpri |  |-  ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) | 
						
							| 18 |  | hmphi |  |-  ( ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) -> ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ~= ( ordTop ` <_ ) ) | 
						
							| 19 | 17 18 | ax-mp |  |-  ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ~= ( ordTop ` <_ ) | 
						
							| 20 |  | hmphtr |  |-  ( ( II ~= ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) /\ ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ~= ( ordTop ` <_ ) ) -> II ~= ( ordTop ` <_ ) ) | 
						
							| 21 | 13 19 20 | mp2an |  |-  II ~= ( ordTop ` <_ ) |