Metamath Proof Explorer


Theorem isores1

Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013)

Ref Expression
Assertion isores1 ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) )

Proof

Step Hyp Ref Expression
1 isocnv ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) )
2 isores2 ( 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ↔ 𝐻 Isom 𝑆 , ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ( 𝐵 , 𝐴 ) )
3 1 2 sylib ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑆 , ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ( 𝐵 , 𝐴 ) )
4 isocnv ( 𝐻 Isom 𝑆 , ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ( 𝐵 , 𝐴 ) → 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) )
5 3 4 syl ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) )
6 isof1o ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴1-1-onto𝐵 )
7 f1orel ( 𝐻 : 𝐴1-1-onto𝐵 → Rel 𝐻 )
8 dfrel2 ( Rel 𝐻 𝐻 = 𝐻 )
9 isoeq1 ( 𝐻 = 𝐻 → ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) )
10 8 9 sylbi ( Rel 𝐻 → ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) )
11 6 7 10 3syl ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) )
12 5 11 mpbid ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) )
13 isocnv ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑆 , ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ( 𝐵 , 𝐴 ) )
14 13 2 sylibr ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) )
15 isocnv ( 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
16 14 15 syl ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
17 isof1o ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴1-1-onto𝐵 )
18 isoeq1 ( 𝐻 = 𝐻 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) )
19 8 18 sylbi ( Rel 𝐻 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) )
20 17 7 19 3syl ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) )
21 16 20 mpbid ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
22 12 21 impbii ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) )