| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpnfhmeo.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) | 
						
							| 2 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 3 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 4 |  | 0lepnf | ⊢ 0  ≤  +∞ | 
						
							| 5 |  | ubicc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  0  ≤  +∞ )  →  +∞  ∈  ( 0 [,] +∞ ) ) | 
						
							| 6 | 2 3 4 5 | mp3an | ⊢ +∞  ∈  ( 0 [,] +∞ ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑥  =  1 )  →  +∞  ∈  ( 0 [,] +∞ ) ) | 
						
							| 8 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 9 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 10 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 11 |  | snunico | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  0  ≤  1 )  →  ( ( 0 [,) 1 )  ∪  { 1 } )  =  ( 0 [,] 1 ) ) | 
						
							| 12 | 2 9 10 11 | mp3an | ⊢ ( ( 0 [,) 1 )  ∪  { 1 } )  =  ( 0 [,] 1 ) | 
						
							| 13 | 12 | eleq2i | ⊢ ( 𝑥  ∈  ( ( 0 [,) 1 )  ∪  { 1 } )  ↔  𝑥  ∈  ( 0 [,] 1 ) ) | 
						
							| 14 |  | elun | ⊢ ( 𝑥  ∈  ( ( 0 [,) 1 )  ∪  { 1 } )  ↔  ( 𝑥  ∈  ( 0 [,) 1 )  ∨  𝑥  ∈  { 1 } ) ) | 
						
							| 15 | 13 14 | bitr3i | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↔  ( 𝑥  ∈  ( 0 [,) 1 )  ∨  𝑥  ∈  { 1 } ) ) | 
						
							| 16 |  | pm2.53 | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∨  𝑥  ∈  { 1 } )  →  ( ¬  𝑥  ∈  ( 0 [,) 1 )  →  𝑥  ∈  { 1 } ) ) | 
						
							| 17 | 15 16 | sylbi | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  →  ( ¬  𝑥  ∈  ( 0 [,) 1 )  →  𝑥  ∈  { 1 } ) ) | 
						
							| 18 |  | elsni | ⊢ ( 𝑥  ∈  { 1 }  →  𝑥  =  1 ) | 
						
							| 19 | 17 18 | syl6 | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  →  ( ¬  𝑥  ∈  ( 0 [,) 1 )  →  𝑥  =  1 ) ) | 
						
							| 20 | 19 | con1d | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  →  ( ¬  𝑥  =  1  →  𝑥  ∈  ( 0 [,) 1 ) ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  𝑥  ∈  ( 0 [,) 1 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) | 
						
							| 23 | 22 | icopnfcnv | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  ∧  ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑦  ∈  ( 0 [,) +∞ )  ↦  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) | 
						
							| 24 | 23 | simpli | ⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) | 
						
							| 25 |  | f1of | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  →  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) ⟶ ( 0 [,) +∞ ) ) | 
						
							| 26 | 24 25 | ax-mp | ⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) ⟶ ( 0 [,) +∞ ) | 
						
							| 27 | 22 | fmpt | ⊢ ( ∀ 𝑥  ∈  ( 0 [,) 1 ) ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ )  ↔  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) ⟶ ( 0 [,) +∞ ) ) | 
						
							| 28 | 26 27 | mpbir | ⊢ ∀ 𝑥  ∈  ( 0 [,) 1 ) ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ ) | 
						
							| 29 | 28 | rspec | ⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 30 | 21 29 | syl | ⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 31 | 8 30 | sselid | ⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 32 | 7 31 | ifclda | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 0 [,] 1 ) )  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 34 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 35 | 34 | a1i | ⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  𝑦  =  +∞ )  →  1  ∈  ( 0 [,] 1 ) ) | 
						
							| 36 |  | icossicc | ⊢ ( 0 [,) 1 )  ⊆  ( 0 [,] 1 ) | 
						
							| 37 |  | snunico | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  0  ≤  +∞ )  →  ( ( 0 [,) +∞ )  ∪  { +∞ } )  =  ( 0 [,] +∞ ) ) | 
						
							| 38 | 2 3 4 37 | mp3an | ⊢ ( ( 0 [,) +∞ )  ∪  { +∞ } )  =  ( 0 [,] +∞ ) | 
						
							| 39 | 38 | eleq2i | ⊢ ( 𝑦  ∈  ( ( 0 [,) +∞ )  ∪  { +∞ } )  ↔  𝑦  ∈  ( 0 [,] +∞ ) ) | 
						
							| 40 |  | elun | ⊢ ( 𝑦  ∈  ( ( 0 [,) +∞ )  ∪  { +∞ } )  ↔  ( 𝑦  ∈  ( 0 [,) +∞ )  ∨  𝑦  ∈  { +∞ } ) ) | 
						
							| 41 | 39 40 | bitr3i | ⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  ↔  ( 𝑦  ∈  ( 0 [,) +∞ )  ∨  𝑦  ∈  { +∞ } ) ) | 
						
							| 42 |  | pm2.53 | ⊢ ( ( 𝑦  ∈  ( 0 [,) +∞ )  ∨  𝑦  ∈  { +∞ } )  →  ( ¬  𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  ∈  { +∞ } ) ) | 
						
							| 43 | 41 42 | sylbi | ⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  ( ¬  𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  ∈  { +∞ } ) ) | 
						
							| 44 |  | elsni | ⊢ ( 𝑦  ∈  { +∞ }  →  𝑦  =  +∞ ) | 
						
							| 45 | 43 44 | syl6 | ⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  ( ¬  𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  =  +∞ ) ) | 
						
							| 46 | 45 | con1d | ⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  ( ¬  𝑦  =  +∞  →  𝑦  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  𝑦  ∈  ( 0 [,) +∞ ) ) | 
						
							| 48 |  | f1ocnv | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  →  ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) +∞ ) –1-1-onto→ ( 0 [,) 1 ) ) | 
						
							| 49 |  | f1of | ⊢ ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) +∞ ) –1-1-onto→ ( 0 [,) 1 )  →  ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) +∞ ) ⟶ ( 0 [,) 1 ) ) | 
						
							| 50 | 24 48 49 | mp2b | ⊢ ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) +∞ ) ⟶ ( 0 [,) 1 ) | 
						
							| 51 | 23 | simpri | ⊢ ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑦  ∈  ( 0 [,) +∞ )  ↦  ( 𝑦  /  ( 1  +  𝑦 ) ) ) | 
						
							| 52 | 51 | fmpt | ⊢ ( ∀ 𝑦  ∈  ( 0 [,) +∞ ) ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 )  ↔  ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) +∞ ) ⟶ ( 0 [,) 1 ) ) | 
						
							| 53 | 50 52 | mpbir | ⊢ ∀ 𝑦  ∈  ( 0 [,) +∞ ) ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 ) | 
						
							| 54 | 53 | rspec | ⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 ) ) | 
						
							| 55 | 47 54 | syl | ⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 ) ) | 
						
							| 56 | 36 55 | sselid | ⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,] 1 ) ) | 
						
							| 57 | 35 56 | ifclda | ⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ∈  ( 0 [,] 1 ) ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  →  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ∈  ( 0 [,] 1 ) ) | 
						
							| 59 |  | eqeq2 | ⊢ ( 1  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  →  ( 𝑥  =  1  ↔  𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) ) | 
						
							| 60 | 59 | bibi1d | ⊢ ( 1  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  →  ( ( 𝑥  =  1  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  ↔  ( 𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) ) | 
						
							| 61 |  | eqeq2 | ⊢ ( ( 𝑦  /  ( 1  +  𝑦 ) )  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) ) | 
						
							| 62 | 61 | bibi1d | ⊢ ( ( 𝑦  /  ( 1  +  𝑦 ) )  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  →  ( ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  ↔  ( 𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) ) | 
						
							| 63 |  | simpr | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  𝑦  =  +∞ ) | 
						
							| 64 |  | iftrue | ⊢ ( 𝑥  =  1  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  +∞ ) | 
						
							| 65 | 64 | eqeq2d | ⊢ ( 𝑥  =  1  →  ( 𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ↔  𝑦  =  +∞ ) ) | 
						
							| 66 | 63 65 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( 𝑥  =  1  →  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) | 
						
							| 67 |  | pnfnre | ⊢ +∞  ∉  ℝ | 
						
							| 68 |  | neleq1 | ⊢ ( 𝑦  =  +∞  →  ( 𝑦  ∉  ℝ  ↔  +∞  ∉  ℝ ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( 𝑦  ∉  ℝ  ↔  +∞  ∉  ℝ ) ) | 
						
							| 70 | 67 69 | mpbiri | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  𝑦  ∉  ℝ ) | 
						
							| 71 |  | neleq1 | ⊢ ( 𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  ( 𝑦  ∉  ℝ  ↔  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∉  ℝ ) ) | 
						
							| 72 | 70 71 | syl5ibcom | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( 𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∉  ℝ ) ) | 
						
							| 73 |  | df-nel | ⊢ ( if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∉  ℝ  ↔  ¬  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ℝ ) | 
						
							| 74 |  | iffalse | ⊢ ( ¬  𝑥  =  1  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) | 
						
							| 76 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 77 | 76 30 | sselid | ⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ℝ ) | 
						
							| 78 | 75 77 | eqeltrd | ⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ℝ ) | 
						
							| 79 | 78 | ex | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  →  ( ¬  𝑥  =  1  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ℝ ) ) | 
						
							| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( ¬  𝑥  =  1  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ℝ ) ) | 
						
							| 81 | 80 | con1d | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( ¬  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ℝ  →  𝑥  =  1 ) ) | 
						
							| 82 | 73 81 | biimtrid | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∉  ℝ  →  𝑥  =  1 ) ) | 
						
							| 83 | 72 82 | syld | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( 𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  𝑥  =  1 ) ) | 
						
							| 84 | 66 83 | impbid | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( 𝑥  =  1  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) | 
						
							| 85 |  | eqeq2 | ⊢ ( +∞  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  ( 𝑦  =  +∞  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) | 
						
							| 86 | 85 | bibi2d | ⊢ ( +∞  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  ( ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  +∞ )  ↔  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) ) | 
						
							| 87 |  | eqeq2 | ⊢ ( ( 𝑥  /  ( 1  −  𝑥 ) )  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  ( 𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) | 
						
							| 88 | 87 | bibi2d | ⊢ ( ( 𝑥  /  ( 1  −  𝑥 ) )  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  ( ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ↔  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) ) | 
						
							| 89 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 90 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 )  ↔  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( 1  +  𝑦 ) )  ∧  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 ) ) ) | 
						
							| 91 | 89 9 90 | mp2an | ⊢ ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 )  ↔  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( 1  +  𝑦 ) )  ∧  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 ) ) | 
						
							| 92 | 55 91 | sylib | ⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( 1  +  𝑦 ) )  ∧  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 ) ) | 
						
							| 93 | 92 | simp1d | ⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ ) | 
						
							| 94 | 92 | simp3d | ⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 ) | 
						
							| 95 | 93 94 | gtned | ⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  1  ≠  ( 𝑦  /  ( 1  +  𝑦 ) ) ) | 
						
							| 96 | 95 | adantll | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  →  1  ≠  ( 𝑦  /  ( 1  +  𝑦 ) ) ) | 
						
							| 97 | 96 | neneqd | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  →  ¬  1  =  ( 𝑦  /  ( 1  +  𝑦 ) ) ) | 
						
							| 98 |  | eqeq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  1  =  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) | 
						
							| 99 | 98 | notbid | ⊢ ( 𝑥  =  1  →  ( ¬  𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  ¬  1  =  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) | 
						
							| 100 | 97 99 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑥  =  1  →  ¬  𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) | 
						
							| 101 | 100 | imp | ⊢ ( ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  ∧  𝑥  =  1 )  →  ¬  𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) ) ) | 
						
							| 102 |  | simplr | ⊢ ( ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  ∧  𝑥  =  1 )  →  ¬  𝑦  =  +∞ ) | 
						
							| 103 | 101 102 | 2falsed | ⊢ ( ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  ∧  𝑥  =  1 )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  +∞ ) ) | 
						
							| 104 |  | f1ocnvfvb | ⊢ ( ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  ∧  𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑥 )  =  𝑦  ↔  ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑦 )  =  𝑥 ) ) | 
						
							| 105 | 24 104 | mp3an1 | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑥 )  =  𝑦  ↔  ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑦 )  =  𝑥 ) ) | 
						
							| 106 |  | simpl | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  𝑥  ∈  ( 0 [,) 1 ) ) | 
						
							| 107 |  | ovex | ⊢ ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  V | 
						
							| 108 | 22 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  V )  →  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑥 )  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) | 
						
							| 109 | 106 107 108 | sylancl | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑥 )  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) | 
						
							| 110 | 109 | eqeq1d | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑥 )  =  𝑦  ↔  ( 𝑥  /  ( 1  −  𝑥 ) )  =  𝑦 ) ) | 
						
							| 111 |  | simpr | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  𝑦  ∈  ( 0 [,) +∞ ) ) | 
						
							| 112 |  | ovex | ⊢ ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  V | 
						
							| 113 | 51 | fvmpt2 | ⊢ ( ( 𝑦  ∈  ( 0 [,) +∞ )  ∧  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  V )  →  ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑦 )  =  ( 𝑦  /  ( 1  +  𝑦 ) ) ) | 
						
							| 114 | 111 112 113 | sylancl | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑦 )  =  ( 𝑦  /  ( 1  +  𝑦 ) ) ) | 
						
							| 115 | 114 | eqeq1d | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑦 )  =  𝑥  ↔  ( 𝑦  /  ( 1  +  𝑦 ) )  =  𝑥 ) ) | 
						
							| 116 | 105 110 115 | 3bitr3rd | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  =  𝑥  ↔  ( 𝑥  /  ( 1  −  𝑥 ) )  =  𝑦 ) ) | 
						
							| 117 |  | eqcom | ⊢ ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  ( 𝑦  /  ( 1  +  𝑦 ) )  =  𝑥 ) | 
						
							| 118 |  | eqcom | ⊢ ( 𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) )  ↔  ( 𝑥  /  ( 1  −  𝑥 ) )  =  𝑦 ) | 
						
							| 119 | 116 117 118 | 3bitr4g | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) | 
						
							| 120 | 21 47 119 | syl2an | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  ∧  ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ ) )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) | 
						
							| 121 | 120 | an4s | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ( ¬  𝑥  =  1  ∧  ¬  𝑦  =  +∞ ) )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) | 
						
							| 122 | 121 | anass1rs | ⊢ ( ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  ∧  ¬  𝑥  =  1 )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) | 
						
							| 123 | 86 88 103 122 | ifbothda | ⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) | 
						
							| 124 | 60 62 84 123 | ifbothda | ⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  →  ( 𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) | 
						
							| 125 | 124 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) ) )  →  ( 𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) | 
						
							| 126 | 1 33 58 125 | f1ocnv2d | ⊢ ( ⊤  →  ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  ∧  ◡ 𝐹  =  ( 𝑦  ∈  ( 0 [,] +∞ )  ↦  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) ) ) | 
						
							| 127 | 126 | mptru | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  ∧  ◡ 𝐹  =  ( 𝑦  ∈  ( 0 [,] +∞ )  ↦  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) ) |