| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpnfhmeo.f |  |-  F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) | 
						
							| 2 |  | 0xr |  |-  0 e. RR* | 
						
							| 3 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 4 |  | 0lepnf |  |-  0 <_ +oo | 
						
							| 5 |  | ubicc2 |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) ) | 
						
							| 6 | 2 3 4 5 | mp3an |  |-  +oo e. ( 0 [,] +oo ) | 
						
							| 7 | 6 | a1i |  |-  ( ( x e. ( 0 [,] 1 ) /\ x = 1 ) -> +oo e. ( 0 [,] +oo ) ) | 
						
							| 8 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 9 |  | 1xr |  |-  1 e. RR* | 
						
							| 10 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 11 |  | snunico |  |-  ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) ) | 
						
							| 12 | 2 9 10 11 | mp3an |  |-  ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) | 
						
							| 13 | 12 | eleq2i |  |-  ( x e. ( ( 0 [,) 1 ) u. { 1 } ) <-> x e. ( 0 [,] 1 ) ) | 
						
							| 14 |  | elun |  |-  ( x e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( x e. ( 0 [,) 1 ) \/ x e. { 1 } ) ) | 
						
							| 15 | 13 14 | bitr3i |  |-  ( x e. ( 0 [,] 1 ) <-> ( x e. ( 0 [,) 1 ) \/ x e. { 1 } ) ) | 
						
							| 16 |  | pm2.53 |  |-  ( ( x e. ( 0 [,) 1 ) \/ x e. { 1 } ) -> ( -. x e. ( 0 [,) 1 ) -> x e. { 1 } ) ) | 
						
							| 17 | 15 16 | sylbi |  |-  ( x e. ( 0 [,] 1 ) -> ( -. x e. ( 0 [,) 1 ) -> x e. { 1 } ) ) | 
						
							| 18 |  | elsni |  |-  ( x e. { 1 } -> x = 1 ) | 
						
							| 19 | 17 18 | syl6 |  |-  ( x e. ( 0 [,] 1 ) -> ( -. x e. ( 0 [,) 1 ) -> x = 1 ) ) | 
						
							| 20 | 19 | con1d |  |-  ( x e. ( 0 [,] 1 ) -> ( -. x = 1 -> x e. ( 0 [,) 1 ) ) ) | 
						
							| 21 | 20 | imp |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> x e. ( 0 [,) 1 ) ) | 
						
							| 22 |  | eqid |  |-  ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) | 
						
							| 23 | 22 | icopnfcnv |  |-  ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( y e. ( 0 [,) +oo ) |-> ( y / ( 1 + y ) ) ) ) | 
						
							| 24 | 23 | simpli |  |-  ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) | 
						
							| 25 |  | f1of |  |-  ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) -> ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) --> ( 0 [,) +oo ) ) | 
						
							| 26 | 24 25 | ax-mp |  |-  ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) --> ( 0 [,) +oo ) | 
						
							| 27 | 22 | fmpt |  |-  ( A. x e. ( 0 [,) 1 ) ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) <-> ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) --> ( 0 [,) +oo ) ) | 
						
							| 28 | 26 27 | mpbir |  |-  A. x e. ( 0 [,) 1 ) ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) | 
						
							| 29 | 28 | rspec |  |-  ( x e. ( 0 [,) 1 ) -> ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) ) | 
						
							| 30 | 21 29 | syl |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) ) | 
						
							| 31 | 8 30 | sselid |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> ( x / ( 1 - x ) ) e. ( 0 [,] +oo ) ) | 
						
							| 32 | 7 31 | ifclda |  |-  ( x e. ( 0 [,] 1 ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( T. /\ x e. ( 0 [,] 1 ) ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 34 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 35 | 34 | a1i |  |-  ( ( y e. ( 0 [,] +oo ) /\ y = +oo ) -> 1 e. ( 0 [,] 1 ) ) | 
						
							| 36 |  | icossicc |  |-  ( 0 [,) 1 ) C_ ( 0 [,] 1 ) | 
						
							| 37 |  | snunico |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> ( ( 0 [,) +oo ) u. { +oo } ) = ( 0 [,] +oo ) ) | 
						
							| 38 | 2 3 4 37 | mp3an |  |-  ( ( 0 [,) +oo ) u. { +oo } ) = ( 0 [,] +oo ) | 
						
							| 39 | 38 | eleq2i |  |-  ( y e. ( ( 0 [,) +oo ) u. { +oo } ) <-> y e. ( 0 [,] +oo ) ) | 
						
							| 40 |  | elun |  |-  ( y e. ( ( 0 [,) +oo ) u. { +oo } ) <-> ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) ) | 
						
							| 41 | 39 40 | bitr3i |  |-  ( y e. ( 0 [,] +oo ) <-> ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) ) | 
						
							| 42 |  | pm2.53 |  |-  ( ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) -> ( -. y e. ( 0 [,) +oo ) -> y e. { +oo } ) ) | 
						
							| 43 | 41 42 | sylbi |  |-  ( y e. ( 0 [,] +oo ) -> ( -. y e. ( 0 [,) +oo ) -> y e. { +oo } ) ) | 
						
							| 44 |  | elsni |  |-  ( y e. { +oo } -> y = +oo ) | 
						
							| 45 | 43 44 | syl6 |  |-  ( y e. ( 0 [,] +oo ) -> ( -. y e. ( 0 [,) +oo ) -> y = +oo ) ) | 
						
							| 46 | 45 | con1d |  |-  ( y e. ( 0 [,] +oo ) -> ( -. y = +oo -> y e. ( 0 [,) +oo ) ) ) | 
						
							| 47 | 46 | imp |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> y e. ( 0 [,) +oo ) ) | 
						
							| 48 |  | f1ocnv |  |-  ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) -> `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) -1-1-onto-> ( 0 [,) 1 ) ) | 
						
							| 49 |  | f1of |  |-  ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) -1-1-onto-> ( 0 [,) 1 ) -> `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) --> ( 0 [,) 1 ) ) | 
						
							| 50 | 24 48 49 | mp2b |  |-  `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) --> ( 0 [,) 1 ) | 
						
							| 51 | 23 | simpri |  |-  `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( y e. ( 0 [,) +oo ) |-> ( y / ( 1 + y ) ) ) | 
						
							| 52 | 51 | fmpt |  |-  ( A. y e. ( 0 [,) +oo ) ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) <-> `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) --> ( 0 [,) 1 ) ) | 
						
							| 53 | 50 52 | mpbir |  |-  A. y e. ( 0 [,) +oo ) ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) | 
						
							| 54 | 53 | rspec |  |-  ( y e. ( 0 [,) +oo ) -> ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) ) | 
						
							| 55 | 47 54 | syl |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) ) | 
						
							| 56 | 36 55 | sselid |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) e. ( 0 [,] 1 ) ) | 
						
							| 57 | 35 56 | ifclda |  |-  ( y e. ( 0 [,] +oo ) -> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) e. ( 0 [,] 1 ) ) | 
						
							| 58 | 57 | adantl |  |-  ( ( T. /\ y e. ( 0 [,] +oo ) ) -> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) e. ( 0 [,] 1 ) ) | 
						
							| 59 |  | eqeq2 |  |-  ( 1 = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( x = 1 <-> x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) | 
						
							| 60 | 59 | bibi1d |  |-  ( 1 = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( ( x = 1 <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) <-> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) ) | 
						
							| 61 |  | eqeq2 |  |-  ( ( y / ( 1 + y ) ) = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( x = ( y / ( 1 + y ) ) <-> x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) | 
						
							| 62 | 61 | bibi1d |  |-  ( ( y / ( 1 + y ) ) = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) <-> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) ) | 
						
							| 63 |  | simpr |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> y = +oo ) | 
						
							| 64 |  | iftrue |  |-  ( x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = +oo ) | 
						
							| 65 | 64 | eqeq2d |  |-  ( x = 1 -> ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) <-> y = +oo ) ) | 
						
							| 66 | 63 65 | syl5ibrcom |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( x = 1 -> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) | 
						
							| 67 |  | pnfnre |  |-  +oo e/ RR | 
						
							| 68 |  | neleq1 |  |-  ( y = +oo -> ( y e/ RR <-> +oo e/ RR ) ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y e/ RR <-> +oo e/ RR ) ) | 
						
							| 70 | 67 69 | mpbiri |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> y e/ RR ) | 
						
							| 71 |  | neleq1 |  |-  ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( y e/ RR <-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR ) ) | 
						
							| 72 | 70 71 | syl5ibcom |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR ) ) | 
						
							| 73 |  | df-nel |  |-  ( if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR <-> -. if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR ) | 
						
							| 74 |  | iffalse |  |-  ( -. x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) | 
						
							| 75 | 74 | adantl |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) | 
						
							| 76 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 77 | 76 30 | sselid |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> ( x / ( 1 - x ) ) e. RR ) | 
						
							| 78 | 75 77 | eqeltrd |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR ) | 
						
							| 79 | 78 | ex |  |-  ( x e. ( 0 [,] 1 ) -> ( -. x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR ) ) | 
						
							| 80 | 79 | ad2antrr |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( -. x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR ) ) | 
						
							| 81 | 80 | con1d |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( -. if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR -> x = 1 ) ) | 
						
							| 82 | 73 81 | biimtrid |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR -> x = 1 ) ) | 
						
							| 83 | 72 82 | syld |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> x = 1 ) ) | 
						
							| 84 | 66 83 | impbid |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( x = 1 <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) | 
						
							| 85 |  | eqeq2 |  |-  ( +oo = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( y = +oo <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) | 
						
							| 86 | 85 | bibi2d |  |-  ( +oo = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( ( x = ( y / ( 1 + y ) ) <-> y = +oo ) <-> ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) ) | 
						
							| 87 |  | eqeq2 |  |-  ( ( x / ( 1 - x ) ) = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( y = ( x / ( 1 - x ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) | 
						
							| 88 | 87 | bibi2d |  |-  ( ( x / ( 1 - x ) ) = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) <-> ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) ) | 
						
							| 89 |  | 0re |  |-  0 e. RR | 
						
							| 90 |  | elico2 |  |-  ( ( 0 e. RR /\ 1 e. RR* ) -> ( ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) <-> ( ( y / ( 1 + y ) ) e. RR /\ 0 <_ ( y / ( 1 + y ) ) /\ ( y / ( 1 + y ) ) < 1 ) ) ) | 
						
							| 91 | 89 9 90 | mp2an |  |-  ( ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) <-> ( ( y / ( 1 + y ) ) e. RR /\ 0 <_ ( y / ( 1 + y ) ) /\ ( y / ( 1 + y ) ) < 1 ) ) | 
						
							| 92 | 55 91 | sylib |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( ( y / ( 1 + y ) ) e. RR /\ 0 <_ ( y / ( 1 + y ) ) /\ ( y / ( 1 + y ) ) < 1 ) ) | 
						
							| 93 | 92 | simp1d |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) e. RR ) | 
						
							| 94 | 92 | simp3d |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) < 1 ) | 
						
							| 95 | 93 94 | gtned |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> 1 =/= ( y / ( 1 + y ) ) ) | 
						
							| 96 | 95 | adantll |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> 1 =/= ( y / ( 1 + y ) ) ) | 
						
							| 97 | 96 | neneqd |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> -. 1 = ( y / ( 1 + y ) ) ) | 
						
							| 98 |  | eqeq1 |  |-  ( x = 1 -> ( x = ( y / ( 1 + y ) ) <-> 1 = ( y / ( 1 + y ) ) ) ) | 
						
							| 99 | 98 | notbid |  |-  ( x = 1 -> ( -. x = ( y / ( 1 + y ) ) <-> -. 1 = ( y / ( 1 + y ) ) ) ) | 
						
							| 100 | 97 99 | syl5ibrcom |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> ( x = 1 -> -. x = ( y / ( 1 + y ) ) ) ) | 
						
							| 101 | 100 | imp |  |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 1 ) -> -. x = ( y / ( 1 + y ) ) ) | 
						
							| 102 |  | simplr |  |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 1 ) -> -. y = +oo ) | 
						
							| 103 | 101 102 | 2falsed |  |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 1 ) -> ( x = ( y / ( 1 + y ) ) <-> y = +oo ) ) | 
						
							| 104 |  | f1ocnvfvb |  |-  ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = y <-> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = x ) ) | 
						
							| 105 | 24 104 | mp3an1 |  |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = y <-> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = x ) ) | 
						
							| 106 |  | simpl |  |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> x e. ( 0 [,) 1 ) ) | 
						
							| 107 |  | ovex |  |-  ( x / ( 1 - x ) ) e. _V | 
						
							| 108 | 22 | fvmpt2 |  |-  ( ( x e. ( 0 [,) 1 ) /\ ( x / ( 1 - x ) ) e. _V ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = ( x / ( 1 - x ) ) ) | 
						
							| 109 | 106 107 108 | sylancl |  |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = ( x / ( 1 - x ) ) ) | 
						
							| 110 | 109 | eqeq1d |  |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = y <-> ( x / ( 1 - x ) ) = y ) ) | 
						
							| 111 |  | simpr |  |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> y e. ( 0 [,) +oo ) ) | 
						
							| 112 |  | ovex |  |-  ( y / ( 1 + y ) ) e. _V | 
						
							| 113 | 51 | fvmpt2 |  |-  ( ( y e. ( 0 [,) +oo ) /\ ( y / ( 1 + y ) ) e. _V ) -> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = ( y / ( 1 + y ) ) ) | 
						
							| 114 | 111 112 113 | sylancl |  |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = ( y / ( 1 + y ) ) ) | 
						
							| 115 | 114 | eqeq1d |  |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = x <-> ( y / ( 1 + y ) ) = x ) ) | 
						
							| 116 | 105 110 115 | 3bitr3rd |  |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( y / ( 1 + y ) ) = x <-> ( x / ( 1 - x ) ) = y ) ) | 
						
							| 117 |  | eqcom |  |-  ( x = ( y / ( 1 + y ) ) <-> ( y / ( 1 + y ) ) = x ) | 
						
							| 118 |  | eqcom |  |-  ( y = ( x / ( 1 - x ) ) <-> ( x / ( 1 - x ) ) = y ) | 
						
							| 119 | 116 117 118 | 3bitr4g |  |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) ) | 
						
							| 120 | 21 47 119 | syl2an |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) /\ ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) ) | 
						
							| 121 | 120 | an4s |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ ( -. x = 1 /\ -. y = +oo ) ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) ) | 
						
							| 122 | 121 | anass1rs |  |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ -. x = 1 ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) ) | 
						
							| 123 | 86 88 103 122 | ifbothda |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) | 
						
							| 124 | 60 62 84 123 | ifbothda |  |-  ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) -> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) | 
						
							| 125 | 124 | adantl |  |-  ( ( T. /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) ) -> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) | 
						
							| 126 | 1 33 58 125 | f1ocnv2d |  |-  ( T. -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) ) | 
						
							| 127 | 126 | mptru |  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) |