| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							renegcl | 
							 |-  ( A e. RR -> -u A e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							leneg | 
							 |-  ( ( -u A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ -u -u A ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ -u -u A ) )  | 
						
						
							| 4 | 
							
								
							 | 
							recn | 
							 |-  ( A e. RR -> A e. CC )  | 
						
						
							| 5 | 
							
								4
							 | 
							negnegd | 
							 |-  ( A e. RR -> -u -u A = A )  | 
						
						
							| 6 | 
							
								5
							 | 
							breq2d | 
							 |-  ( A e. RR -> ( -u B <_ -u -u A <-> -u B <_ A ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( -u B <_ -u -u A <-> -u B <_ A ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							bitrd | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ A ) )  |