Metamath Proof Explorer


Theorem lenegcon1

Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 10-May-2004)

Ref Expression
Assertion lenegcon1
|- ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ A ) )

Proof

Step Hyp Ref Expression
1 renegcl
 |-  ( A e. RR -> -u A e. RR )
2 leneg
 |-  ( ( -u A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ -u -u A ) )
3 1 2 sylan
 |-  ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ -u -u A ) )
4 recn
 |-  ( A e. RR -> A e. CC )
5 4 negnegd
 |-  ( A e. RR -> -u -u A = A )
6 5 breq2d
 |-  ( A e. RR -> ( -u B <_ -u -u A <-> -u B <_ A ) )
7 6 adantr
 |-  ( ( A e. RR /\ B e. RR ) -> ( -u B <_ -u -u A <-> -u B <_ A ) )
8 3 7 bitrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ A ) )