Metamath Proof Explorer


Theorem iccpnfhmeo

Description: The defined bijection from [ 0 , 1 ] to [ 0 , +oo ] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses iccpnfhmeo.f F = x 0 1 if x = 1 +∞ x 1 x
iccpnfhmeo.k K = ordTop 𝑡 0 +∞
Assertion iccpnfhmeo F Isom < , < 0 1 0 +∞ F II Homeo K

Proof

Step Hyp Ref Expression
1 iccpnfhmeo.f F = x 0 1 if x = 1 +∞ x 1 x
2 iccpnfhmeo.k K = ordTop 𝑡 0 +∞
3 iccssxr 0 1 *
4 xrltso < Or *
5 soss 0 1 * < Or * < Or 0 1
6 3 4 5 mp2 < Or 0 1
7 iccssxr 0 +∞ *
8 soss 0 +∞ * < Or * < Or 0 +∞
9 7 4 8 mp2 < Or 0 +∞
10 sopo < Or 0 +∞ < Po 0 +∞
11 9 10 ax-mp < Po 0 +∞
12 1 iccpnfcnv F : 0 1 1-1 onto 0 +∞ F -1 = y 0 +∞ if y = +∞ 1 y 1 + y
13 12 simpli F : 0 1 1-1 onto 0 +∞
14 f1ofo F : 0 1 1-1 onto 0 +∞ F : 0 1 onto 0 +∞
15 13 14 ax-mp F : 0 1 onto 0 +∞
16 elicc01 z 0 1 z 0 z z 1
17 16 simp1bi z 0 1 z
18 17 3ad2ant1 z 0 1 w 0 1 z < w z
19 elicc01 w 0 1 w 0 w w 1
20 19 simp1bi w 0 1 w
21 20 3ad2ant2 z 0 1 w 0 1 z < w w
22 1red z 0 1 w 0 1 z < w 1
23 simp3 z 0 1 w 0 1 z < w z < w
24 19 simp3bi w 0 1 w 1
25 24 3ad2ant2 z 0 1 w 0 1 z < w w 1
26 18 21 22 23 25 ltletrd z 0 1 w 0 1 z < w z < 1
27 18 26 gtned z 0 1 w 0 1 z < w 1 z
28 27 necomd z 0 1 w 0 1 z < w z 1
29 ifnefalse z 1 if z = 1 +∞ z 1 z = z 1 z
30 28 29 syl z 0 1 w 0 1 z < w if z = 1 +∞ z 1 z = z 1 z
31 breq2 +∞ = if w = 1 +∞ w 1 w z 1 z < +∞ z 1 z < if w = 1 +∞ w 1 w
32 breq2 w 1 w = if w = 1 +∞ w 1 w z 1 z < w 1 w z 1 z < if w = 1 +∞ w 1 w
33 1re 1
34 resubcl 1 z 1 z
35 33 18 34 sylancr z 0 1 w 0 1 z < w 1 z
36 ax-1cn 1
37 18 recnd z 0 1 w 0 1 z < w z
38 subeq0 1 z 1 z = 0 1 = z
39 38 necon3bid 1 z 1 z 0 1 z
40 36 37 39 sylancr z 0 1 w 0 1 z < w 1 z 0 1 z
41 27 40 mpbird z 0 1 w 0 1 z < w 1 z 0
42 18 35 41 redivcld z 0 1 w 0 1 z < w z 1 z
43 42 ltpnfd z 0 1 w 0 1 z < w z 1 z < +∞
44 43 adantr z 0 1 w 0 1 z < w w = 1 z 1 z < +∞
45 simpl3 z 0 1 w 0 1 z < w ¬ w = 1 z < w
46 eqid x 0 1 x 1 x = x 0 1 x 1 x
47 eqid TopOpen fld = TopOpen fld
48 46 47 icopnfhmeo x 0 1 x 1 x Isom < , < 0 1 0 +∞ x 0 1 x 1 x TopOpen fld 𝑡 0 1 Homeo TopOpen fld 𝑡 0 +∞
49 48 simpli x 0 1 x 1 x Isom < , < 0 1 0 +∞
50 49 a1i z 0 1 w 0 1 z < w ¬ w = 1 x 0 1 x 1 x Isom < , < 0 1 0 +∞
51 simp1 z 0 1 w 0 1 z < w z 0 1
52 0xr 0 *
53 1xr 1 *
54 0le1 0 1
55 snunico 0 * 1 * 0 1 0 1 1 = 0 1
56 52 53 54 55 mp3an 0 1 1 = 0 1
57 51 56 eleqtrrdi z 0 1 w 0 1 z < w z 0 1 1
58 elun z 0 1 1 z 0 1 z 1
59 57 58 sylib z 0 1 w 0 1 z < w z 0 1 z 1
60 59 ord z 0 1 w 0 1 z < w ¬ z 0 1 z 1
61 elsni z 1 z = 1
62 60 61 syl6 z 0 1 w 0 1 z < w ¬ z 0 1 z = 1
63 62 necon1ad z 0 1 w 0 1 z < w z 1 z 0 1
64 28 63 mpd z 0 1 w 0 1 z < w z 0 1
65 64 adantr z 0 1 w 0 1 z < w ¬ w = 1 z 0 1
66 simp2 z 0 1 w 0 1 z < w w 0 1
67 66 56 eleqtrrdi z 0 1 w 0 1 z < w w 0 1 1
68 elun w 0 1 1 w 0 1 w 1
69 67 68 sylib z 0 1 w 0 1 z < w w 0 1 w 1
70 69 ord z 0 1 w 0 1 z < w ¬ w 0 1 w 1
71 elsni w 1 w = 1
72 70 71 syl6 z 0 1 w 0 1 z < w ¬ w 0 1 w = 1
73 72 con1d z 0 1 w 0 1 z < w ¬ w = 1 w 0 1
74 73 imp z 0 1 w 0 1 z < w ¬ w = 1 w 0 1
75 isorel x 0 1 x 1 x Isom < , < 0 1 0 +∞ z 0 1 w 0 1 z < w x 0 1 x 1 x z < x 0 1 x 1 x w
76 50 65 74 75 syl12anc z 0 1 w 0 1 z < w ¬ w = 1 z < w x 0 1 x 1 x z < x 0 1 x 1 x w
77 45 76 mpbid z 0 1 w 0 1 z < w ¬ w = 1 x 0 1 x 1 x z < x 0 1 x 1 x w
78 id x = z x = z
79 oveq2 x = z 1 x = 1 z
80 78 79 oveq12d x = z x 1 x = z 1 z
81 ovex z 1 z V
82 80 46 81 fvmpt z 0 1 x 0 1 x 1 x z = z 1 z
83 65 82 syl z 0 1 w 0 1 z < w ¬ w = 1 x 0 1 x 1 x z = z 1 z
84 id x = w x = w
85 oveq2 x = w 1 x = 1 w
86 84 85 oveq12d x = w x 1 x = w 1 w
87 ovex w 1 w V
88 86 46 87 fvmpt w 0 1 x 0 1 x 1 x w = w 1 w
89 74 88 syl z 0 1 w 0 1 z < w ¬ w = 1 x 0 1 x 1 x w = w 1 w
90 77 83 89 3brtr3d z 0 1 w 0 1 z < w ¬ w = 1 z 1 z < w 1 w
91 31 32 44 90 ifbothda z 0 1 w 0 1 z < w z 1 z < if w = 1 +∞ w 1 w
92 30 91 eqbrtrd z 0 1 w 0 1 z < w if z = 1 +∞ z 1 z < if w = 1 +∞ w 1 w
93 92 3expia z 0 1 w 0 1 z < w if z = 1 +∞ z 1 z < if w = 1 +∞ w 1 w
94 eqeq1 x = z x = 1 z = 1
95 94 80 ifbieq2d x = z if x = 1 +∞ x 1 x = if z = 1 +∞ z 1 z
96 pnfex +∞ V
97 96 81 ifex if z = 1 +∞ z 1 z V
98 95 1 97 fvmpt z 0 1 F z = if z = 1 +∞ z 1 z
99 eqeq1 x = w x = 1 w = 1
100 99 86 ifbieq2d x = w if x = 1 +∞ x 1 x = if w = 1 +∞ w 1 w
101 96 87 ifex if w = 1 +∞ w 1 w V
102 100 1 101 fvmpt w 0 1 F w = if w = 1 +∞ w 1 w
103 98 102 breqan12d z 0 1 w 0 1 F z < F w if z = 1 +∞ z 1 z < if w = 1 +∞ w 1 w
104 93 103 sylibrd z 0 1 w 0 1 z < w F z < F w
105 104 rgen2 z 0 1 w 0 1 z < w F z < F w
106 soisoi < Or 0 1 < Po 0 +∞ F : 0 1 onto 0 +∞ z 0 1 w 0 1 z < w F z < F w F Isom < , < 0 1 0 +∞
107 6 11 15 105 106 mp4an F Isom < , < 0 1 0 +∞
108 letsr TosetRel
109 108 elexi V
110 109 inex1 0 1 × 0 1 V
111 109 inex1 0 +∞ × 0 +∞ V
112 leiso 0 1 * 0 +∞ * F Isom < , < 0 1 0 +∞ F Isom , 0 1 0 +∞
113 3 7 112 mp2an F Isom < , < 0 1 0 +∞ F Isom , 0 1 0 +∞
114 107 113 mpbi F Isom , 0 1 0 +∞
115 isores1 F Isom , 0 1 0 +∞ F Isom 0 1 × 0 1 , 0 1 0 +∞
116 114 115 mpbi F Isom 0 1 × 0 1 , 0 1 0 +∞
117 isores2 F Isom 0 1 × 0 1 , 0 1 0 +∞ F Isom 0 1 × 0 1 , 0 +∞ × 0 +∞ 0 1 0 +∞
118 116 117 mpbi F Isom 0 1 × 0 1 , 0 +∞ × 0 +∞ 0 1 0 +∞
119 tsrps TosetRel PosetRel
120 108 119 ax-mp PosetRel
121 ledm * = dom
122 121 psssdm PosetRel 0 1 * dom 0 1 × 0 1 = 0 1
123 120 3 122 mp2an dom 0 1 × 0 1 = 0 1
124 123 eqcomi 0 1 = dom 0 1 × 0 1
125 121 psssdm PosetRel 0 +∞ * dom 0 +∞ × 0 +∞ = 0 +∞
126 120 7 125 mp2an dom 0 +∞ × 0 +∞ = 0 +∞
127 126 eqcomi 0 +∞ = dom 0 +∞ × 0 +∞
128 124 127 ordthmeo 0 1 × 0 1 V 0 +∞ × 0 +∞ V F Isom 0 1 × 0 1 , 0 +∞ × 0 +∞ 0 1 0 +∞ F ordTop 0 1 × 0 1 Homeo ordTop 0 +∞ × 0 +∞
129 110 111 118 128 mp3an F ordTop 0 1 × 0 1 Homeo ordTop 0 +∞ × 0 +∞
130 dfii5 II = ordTop 0 1 × 0 1
131 ordtresticc ordTop 𝑡 0 +∞ = ordTop 0 +∞ × 0 +∞
132 2 131 eqtri K = ordTop 0 +∞ × 0 +∞
133 130 132 oveq12i II Homeo K = ordTop 0 1 × 0 1 Homeo ordTop 0 +∞ × 0 +∞
134 129 133 eleqtrri F II Homeo K
135 107 134 pm3.2i F Isom < , < 0 1 0 +∞ F II Homeo K