| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icopnfhmeo.f |  |-  F = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) | 
						
							| 2 |  | icopnfhmeo.j |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 3 | 1 | icopnfcnv |  |-  ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ `' F = ( y e. ( 0 [,) +oo ) |-> ( y / ( 1 + y ) ) ) ) | 
						
							| 4 | 3 | simpli |  |-  F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) | 
						
							| 5 |  | 0re |  |-  0 e. RR | 
						
							| 6 |  | 1xr |  |-  1 e. RR* | 
						
							| 7 |  | elico2 |  |-  ( ( 0 e. RR /\ 1 e. RR* ) -> ( x e. ( 0 [,) 1 ) <-> ( x e. RR /\ 0 <_ x /\ x < 1 ) ) ) | 
						
							| 8 | 5 6 7 | mp2an |  |-  ( x e. ( 0 [,) 1 ) <-> ( x e. RR /\ 0 <_ x /\ x < 1 ) ) | 
						
							| 9 | 8 | simp1bi |  |-  ( x e. ( 0 [,) 1 ) -> x e. RR ) | 
						
							| 10 | 9 | ssriv |  |-  ( 0 [,) 1 ) C_ RR | 
						
							| 11 | 10 | sseli |  |-  ( z e. ( 0 [,) 1 ) -> z e. RR ) | 
						
							| 12 | 11 | adantr |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> z e. RR ) | 
						
							| 13 |  | elico2 |  |-  ( ( 0 e. RR /\ 1 e. RR* ) -> ( w e. ( 0 [,) 1 ) <-> ( w e. RR /\ 0 <_ w /\ w < 1 ) ) ) | 
						
							| 14 | 5 6 13 | mp2an |  |-  ( w e. ( 0 [,) 1 ) <-> ( w e. RR /\ 0 <_ w /\ w < 1 ) ) | 
						
							| 15 | 14 | simp3bi |  |-  ( w e. ( 0 [,) 1 ) -> w < 1 ) | 
						
							| 16 | 10 | sseli |  |-  ( w e. ( 0 [,) 1 ) -> w e. RR ) | 
						
							| 17 |  | 1re |  |-  1 e. RR | 
						
							| 18 |  | difrp |  |-  ( ( w e. RR /\ 1 e. RR ) -> ( w < 1 <-> ( 1 - w ) e. RR+ ) ) | 
						
							| 19 | 16 17 18 | sylancl |  |-  ( w e. ( 0 [,) 1 ) -> ( w < 1 <-> ( 1 - w ) e. RR+ ) ) | 
						
							| 20 | 15 19 | mpbid |  |-  ( w e. ( 0 [,) 1 ) -> ( 1 - w ) e. RR+ ) | 
						
							| 21 | 20 | rpregt0d |  |-  ( w e. ( 0 [,) 1 ) -> ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) ) | 
						
							| 23 | 16 | adantl |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> w e. RR ) | 
						
							| 24 |  | elico2 |  |-  ( ( 0 e. RR /\ 1 e. RR* ) -> ( z e. ( 0 [,) 1 ) <-> ( z e. RR /\ 0 <_ z /\ z < 1 ) ) ) | 
						
							| 25 | 5 6 24 | mp2an |  |-  ( z e. ( 0 [,) 1 ) <-> ( z e. RR /\ 0 <_ z /\ z < 1 ) ) | 
						
							| 26 | 25 | simp3bi |  |-  ( z e. ( 0 [,) 1 ) -> z < 1 ) | 
						
							| 27 |  | difrp |  |-  ( ( z e. RR /\ 1 e. RR ) -> ( z < 1 <-> ( 1 - z ) e. RR+ ) ) | 
						
							| 28 | 11 17 27 | sylancl |  |-  ( z e. ( 0 [,) 1 ) -> ( z < 1 <-> ( 1 - z ) e. RR+ ) ) | 
						
							| 29 | 26 28 | mpbid |  |-  ( z e. ( 0 [,) 1 ) -> ( 1 - z ) e. RR+ ) | 
						
							| 30 | 29 | adantr |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( 1 - z ) e. RR+ ) | 
						
							| 31 | 30 | rpregt0d |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( 1 - z ) e. RR /\ 0 < ( 1 - z ) ) ) | 
						
							| 32 |  | lt2mul2div |  |-  ( ( ( z e. RR /\ ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) ) /\ ( w e. RR /\ ( ( 1 - z ) e. RR /\ 0 < ( 1 - z ) ) ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) ) | 
						
							| 33 | 12 22 23 31 32 | syl22anc |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) ) | 
						
							| 34 | 12 23 | remulcld |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. w ) e. RR ) | 
						
							| 35 | 12 23 34 | ltsub1d |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( z - ( z x. w ) ) < ( w - ( z x. w ) ) ) ) | 
						
							| 36 | 12 | recnd |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> z e. CC ) | 
						
							| 37 |  | 1cnd |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> 1 e. CC ) | 
						
							| 38 | 23 | recnd |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> w e. CC ) | 
						
							| 39 | 36 37 38 | subdid |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. ( 1 - w ) ) = ( ( z x. 1 ) - ( z x. w ) ) ) | 
						
							| 40 | 36 | mulridd |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. 1 ) = z ) | 
						
							| 41 | 40 | oveq1d |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. 1 ) - ( z x. w ) ) = ( z - ( z x. w ) ) ) | 
						
							| 42 | 39 41 | eqtrd |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. ( 1 - w ) ) = ( z - ( z x. w ) ) ) | 
						
							| 43 | 38 37 36 | subdid |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. ( 1 - z ) ) = ( ( w x. 1 ) - ( w x. z ) ) ) | 
						
							| 44 | 38 | mulridd |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. 1 ) = w ) | 
						
							| 45 | 38 36 | mulcomd |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. z ) = ( z x. w ) ) | 
						
							| 46 | 44 45 | oveq12d |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( w x. 1 ) - ( w x. z ) ) = ( w - ( z x. w ) ) ) | 
						
							| 47 | 43 46 | eqtrd |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. ( 1 - z ) ) = ( w - ( z x. w ) ) ) | 
						
							| 48 | 42 47 | breq12d |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z - ( z x. w ) ) < ( w - ( z x. w ) ) ) ) | 
						
							| 49 | 35 48 | bitr4d |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) ) ) | 
						
							| 50 |  | id |  |-  ( x = z -> x = z ) | 
						
							| 51 |  | oveq2 |  |-  ( x = z -> ( 1 - x ) = ( 1 - z ) ) | 
						
							| 52 | 50 51 | oveq12d |  |-  ( x = z -> ( x / ( 1 - x ) ) = ( z / ( 1 - z ) ) ) | 
						
							| 53 |  | ovex |  |-  ( z / ( 1 - z ) ) e. _V | 
						
							| 54 | 52 1 53 | fvmpt |  |-  ( z e. ( 0 [,) 1 ) -> ( F ` z ) = ( z / ( 1 - z ) ) ) | 
						
							| 55 |  | id |  |-  ( x = w -> x = w ) | 
						
							| 56 |  | oveq2 |  |-  ( x = w -> ( 1 - x ) = ( 1 - w ) ) | 
						
							| 57 | 55 56 | oveq12d |  |-  ( x = w -> ( x / ( 1 - x ) ) = ( w / ( 1 - w ) ) ) | 
						
							| 58 |  | ovex |  |-  ( w / ( 1 - w ) ) e. _V | 
						
							| 59 | 57 1 58 | fvmpt |  |-  ( w e. ( 0 [,) 1 ) -> ( F ` w ) = ( w / ( 1 - w ) ) ) | 
						
							| 60 | 54 59 | breqan12d |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( F ` z ) < ( F ` w ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) ) | 
						
							| 61 | 33 49 60 | 3bitr4d |  |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) | 
						
							| 62 | 61 | rgen2 |  |-  A. z e. ( 0 [,) 1 ) A. w e. ( 0 [,) 1 ) ( z < w <-> ( F ` z ) < ( F ` w ) ) | 
						
							| 63 |  | df-isom |  |-  ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ A. z e. ( 0 [,) 1 ) A. w e. ( 0 [,) 1 ) ( z < w <-> ( F ` z ) < ( F ` w ) ) ) ) | 
						
							| 64 | 4 62 63 | mpbir2an |  |-  F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) | 
						
							| 65 |  | letsr |  |-  <_ e. TosetRel | 
						
							| 66 | 65 | elexi |  |-  <_ e. _V | 
						
							| 67 | 66 | inex1 |  |-  ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) e. _V | 
						
							| 68 | 66 | inex1 |  |-  ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) e. _V | 
						
							| 69 |  | icossxr |  |-  ( 0 [,) 1 ) C_ RR* | 
						
							| 70 |  | icossxr |  |-  ( 0 [,) +oo ) C_ RR* | 
						
							| 71 |  | leiso |  |-  ( ( ( 0 [,) 1 ) C_ RR* /\ ( 0 [,) +oo ) C_ RR* ) -> ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) ) | 
						
							| 72 | 69 70 71 | mp2an |  |-  ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) | 
						
							| 73 | 64 72 | mpbi |  |-  F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) | 
						
							| 74 |  | isores1 |  |-  ( F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) | 
						
							| 75 | 73 74 | mpbi |  |-  F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) | 
						
							| 76 |  | isores2 |  |-  ( F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) | 
						
							| 77 | 75 76 | mpbi |  |-  F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) | 
						
							| 78 |  | tsrps |  |-  ( <_ e. TosetRel -> <_ e. PosetRel ) | 
						
							| 79 | 65 78 | ax-mp |  |-  <_ e. PosetRel | 
						
							| 80 |  | ledm |  |-  RR* = dom <_ | 
						
							| 81 | 80 | psssdm |  |-  ( ( <_ e. PosetRel /\ ( 0 [,) 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) = ( 0 [,) 1 ) ) | 
						
							| 82 | 79 69 81 | mp2an |  |-  dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) = ( 0 [,) 1 ) | 
						
							| 83 | 82 | eqcomi |  |-  ( 0 [,) 1 ) = dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) | 
						
							| 84 | 80 | psssdm |  |-  ( ( <_ e. PosetRel /\ ( 0 [,) +oo ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) = ( 0 [,) +oo ) ) | 
						
							| 85 | 79 70 84 | mp2an |  |-  dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) = ( 0 [,) +oo ) | 
						
							| 86 | 85 | eqcomi |  |-  ( 0 [,) +oo ) = dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) | 
						
							| 87 | 83 86 | ordthmeo |  |-  ( ( ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) e. _V /\ ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) ) ) | 
						
							| 88 | 67 68 77 87 | mp3an |  |-  F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) ) | 
						
							| 89 |  | eqid |  |-  ( ordTop ` <_ ) = ( ordTop ` <_ ) | 
						
							| 90 | 2 89 | xrrest2 |  |-  ( ( 0 [,) 1 ) C_ RR -> ( J |`t ( 0 [,) 1 ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) ) | 
						
							| 91 | 10 90 | ax-mp |  |-  ( J |`t ( 0 [,) 1 ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) | 
						
							| 92 |  | iccssico2 |  |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) 1 ) ) -> ( x [,] y ) C_ ( 0 [,) 1 ) ) | 
						
							| 93 | 69 92 | ordtrestixx |  |-  ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) | 
						
							| 94 | 91 93 | eqtri |  |-  ( J |`t ( 0 [,) 1 ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) | 
						
							| 95 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 96 | 2 89 | xrrest2 |  |-  ( ( 0 [,) +oo ) C_ RR -> ( J |`t ( 0 [,) +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) ) | 
						
							| 97 | 95 96 | ax-mp |  |-  ( J |`t ( 0 [,) +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) | 
						
							| 98 |  | iccssico2 |  |-  ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x [,] y ) C_ ( 0 [,) +oo ) ) | 
						
							| 99 | 70 98 | ordtrestixx |  |-  ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) | 
						
							| 100 | 97 99 | eqtri |  |-  ( J |`t ( 0 [,) +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) | 
						
							| 101 | 94 100 | oveq12i |  |-  ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) ) | 
						
							| 102 | 88 101 | eleqtrri |  |-  F e. ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) | 
						
							| 103 | 64 102 | pm3.2i |  |-  ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ F e. ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) ) |