| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icopnfhmeo.f |
|- F = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) |
| 2 |
|
icopnfhmeo.j |
|- J = ( TopOpen ` CCfld ) |
| 3 |
1
|
icopnfcnv |
|- ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ `' F = ( y e. ( 0 [,) +oo ) |-> ( y / ( 1 + y ) ) ) ) |
| 4 |
3
|
simpli |
|- F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) |
| 5 |
|
0re |
|- 0 e. RR |
| 6 |
|
1xr |
|- 1 e. RR* |
| 7 |
|
elico2 |
|- ( ( 0 e. RR /\ 1 e. RR* ) -> ( x e. ( 0 [,) 1 ) <-> ( x e. RR /\ 0 <_ x /\ x < 1 ) ) ) |
| 8 |
5 6 7
|
mp2an |
|- ( x e. ( 0 [,) 1 ) <-> ( x e. RR /\ 0 <_ x /\ x < 1 ) ) |
| 9 |
8
|
simp1bi |
|- ( x e. ( 0 [,) 1 ) -> x e. RR ) |
| 10 |
9
|
ssriv |
|- ( 0 [,) 1 ) C_ RR |
| 11 |
10
|
sseli |
|- ( z e. ( 0 [,) 1 ) -> z e. RR ) |
| 12 |
11
|
adantr |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> z e. RR ) |
| 13 |
|
elico2 |
|- ( ( 0 e. RR /\ 1 e. RR* ) -> ( w e. ( 0 [,) 1 ) <-> ( w e. RR /\ 0 <_ w /\ w < 1 ) ) ) |
| 14 |
5 6 13
|
mp2an |
|- ( w e. ( 0 [,) 1 ) <-> ( w e. RR /\ 0 <_ w /\ w < 1 ) ) |
| 15 |
14
|
simp3bi |
|- ( w e. ( 0 [,) 1 ) -> w < 1 ) |
| 16 |
10
|
sseli |
|- ( w e. ( 0 [,) 1 ) -> w e. RR ) |
| 17 |
|
1re |
|- 1 e. RR |
| 18 |
|
difrp |
|- ( ( w e. RR /\ 1 e. RR ) -> ( w < 1 <-> ( 1 - w ) e. RR+ ) ) |
| 19 |
16 17 18
|
sylancl |
|- ( w e. ( 0 [,) 1 ) -> ( w < 1 <-> ( 1 - w ) e. RR+ ) ) |
| 20 |
15 19
|
mpbid |
|- ( w e. ( 0 [,) 1 ) -> ( 1 - w ) e. RR+ ) |
| 21 |
20
|
rpregt0d |
|- ( w e. ( 0 [,) 1 ) -> ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) ) |
| 22 |
21
|
adantl |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) ) |
| 23 |
16
|
adantl |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> w e. RR ) |
| 24 |
|
elico2 |
|- ( ( 0 e. RR /\ 1 e. RR* ) -> ( z e. ( 0 [,) 1 ) <-> ( z e. RR /\ 0 <_ z /\ z < 1 ) ) ) |
| 25 |
5 6 24
|
mp2an |
|- ( z e. ( 0 [,) 1 ) <-> ( z e. RR /\ 0 <_ z /\ z < 1 ) ) |
| 26 |
25
|
simp3bi |
|- ( z e. ( 0 [,) 1 ) -> z < 1 ) |
| 27 |
|
difrp |
|- ( ( z e. RR /\ 1 e. RR ) -> ( z < 1 <-> ( 1 - z ) e. RR+ ) ) |
| 28 |
11 17 27
|
sylancl |
|- ( z e. ( 0 [,) 1 ) -> ( z < 1 <-> ( 1 - z ) e. RR+ ) ) |
| 29 |
26 28
|
mpbid |
|- ( z e. ( 0 [,) 1 ) -> ( 1 - z ) e. RR+ ) |
| 30 |
29
|
adantr |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( 1 - z ) e. RR+ ) |
| 31 |
30
|
rpregt0d |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( 1 - z ) e. RR /\ 0 < ( 1 - z ) ) ) |
| 32 |
|
lt2mul2div |
|- ( ( ( z e. RR /\ ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) ) /\ ( w e. RR /\ ( ( 1 - z ) e. RR /\ 0 < ( 1 - z ) ) ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) ) |
| 33 |
12 22 23 31 32
|
syl22anc |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) ) |
| 34 |
12 23
|
remulcld |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. w ) e. RR ) |
| 35 |
12 23 34
|
ltsub1d |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( z - ( z x. w ) ) < ( w - ( z x. w ) ) ) ) |
| 36 |
12
|
recnd |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> z e. CC ) |
| 37 |
|
1cnd |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> 1 e. CC ) |
| 38 |
23
|
recnd |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> w e. CC ) |
| 39 |
36 37 38
|
subdid |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. ( 1 - w ) ) = ( ( z x. 1 ) - ( z x. w ) ) ) |
| 40 |
36
|
mulridd |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. 1 ) = z ) |
| 41 |
40
|
oveq1d |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. 1 ) - ( z x. w ) ) = ( z - ( z x. w ) ) ) |
| 42 |
39 41
|
eqtrd |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. ( 1 - w ) ) = ( z - ( z x. w ) ) ) |
| 43 |
38 37 36
|
subdid |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. ( 1 - z ) ) = ( ( w x. 1 ) - ( w x. z ) ) ) |
| 44 |
38
|
mulridd |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. 1 ) = w ) |
| 45 |
38 36
|
mulcomd |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. z ) = ( z x. w ) ) |
| 46 |
44 45
|
oveq12d |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( w x. 1 ) - ( w x. z ) ) = ( w - ( z x. w ) ) ) |
| 47 |
43 46
|
eqtrd |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. ( 1 - z ) ) = ( w - ( z x. w ) ) ) |
| 48 |
42 47
|
breq12d |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z - ( z x. w ) ) < ( w - ( z x. w ) ) ) ) |
| 49 |
35 48
|
bitr4d |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) ) ) |
| 50 |
|
id |
|- ( x = z -> x = z ) |
| 51 |
|
oveq2 |
|- ( x = z -> ( 1 - x ) = ( 1 - z ) ) |
| 52 |
50 51
|
oveq12d |
|- ( x = z -> ( x / ( 1 - x ) ) = ( z / ( 1 - z ) ) ) |
| 53 |
|
ovex |
|- ( z / ( 1 - z ) ) e. _V |
| 54 |
52 1 53
|
fvmpt |
|- ( z e. ( 0 [,) 1 ) -> ( F ` z ) = ( z / ( 1 - z ) ) ) |
| 55 |
|
id |
|- ( x = w -> x = w ) |
| 56 |
|
oveq2 |
|- ( x = w -> ( 1 - x ) = ( 1 - w ) ) |
| 57 |
55 56
|
oveq12d |
|- ( x = w -> ( x / ( 1 - x ) ) = ( w / ( 1 - w ) ) ) |
| 58 |
|
ovex |
|- ( w / ( 1 - w ) ) e. _V |
| 59 |
57 1 58
|
fvmpt |
|- ( w e. ( 0 [,) 1 ) -> ( F ` w ) = ( w / ( 1 - w ) ) ) |
| 60 |
54 59
|
breqan12d |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( F ` z ) < ( F ` w ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) ) |
| 61 |
33 49 60
|
3bitr4d |
|- ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
| 62 |
61
|
rgen2 |
|- A. z e. ( 0 [,) 1 ) A. w e. ( 0 [,) 1 ) ( z < w <-> ( F ` z ) < ( F ` w ) ) |
| 63 |
|
df-isom |
|- ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ A. z e. ( 0 [,) 1 ) A. w e. ( 0 [,) 1 ) ( z < w <-> ( F ` z ) < ( F ` w ) ) ) ) |
| 64 |
4 62 63
|
mpbir2an |
|- F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) |
| 65 |
|
letsr |
|- <_ e. TosetRel |
| 66 |
65
|
elexi |
|- <_ e. _V |
| 67 |
66
|
inex1 |
|- ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) e. _V |
| 68 |
66
|
inex1 |
|- ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) e. _V |
| 69 |
|
icossxr |
|- ( 0 [,) 1 ) C_ RR* |
| 70 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 71 |
|
leiso |
|- ( ( ( 0 [,) 1 ) C_ RR* /\ ( 0 [,) +oo ) C_ RR* ) -> ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) ) |
| 72 |
69 70 71
|
mp2an |
|- ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) |
| 73 |
64 72
|
mpbi |
|- F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) |
| 74 |
|
isores1 |
|- ( F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) |
| 75 |
73 74
|
mpbi |
|- F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) |
| 76 |
|
isores2 |
|- ( F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) |
| 77 |
75 76
|
mpbi |
|- F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) |
| 78 |
|
tsrps |
|- ( <_ e. TosetRel -> <_ e. PosetRel ) |
| 79 |
65 78
|
ax-mp |
|- <_ e. PosetRel |
| 80 |
|
ledm |
|- RR* = dom <_ |
| 81 |
80
|
psssdm |
|- ( ( <_ e. PosetRel /\ ( 0 [,) 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) = ( 0 [,) 1 ) ) |
| 82 |
79 69 81
|
mp2an |
|- dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) = ( 0 [,) 1 ) |
| 83 |
82
|
eqcomi |
|- ( 0 [,) 1 ) = dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) |
| 84 |
80
|
psssdm |
|- ( ( <_ e. PosetRel /\ ( 0 [,) +oo ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) = ( 0 [,) +oo ) ) |
| 85 |
79 70 84
|
mp2an |
|- dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) = ( 0 [,) +oo ) |
| 86 |
85
|
eqcomi |
|- ( 0 [,) +oo ) = dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) |
| 87 |
83 86
|
ordthmeo |
|- ( ( ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) e. _V /\ ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) ) ) |
| 88 |
67 68 77 87
|
mp3an |
|- F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) ) |
| 89 |
|
eqid |
|- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
| 90 |
2 89
|
xrrest2 |
|- ( ( 0 [,) 1 ) C_ RR -> ( J |`t ( 0 [,) 1 ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) ) |
| 91 |
10 90
|
ax-mp |
|- ( J |`t ( 0 [,) 1 ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) |
| 92 |
|
iccssico2 |
|- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) 1 ) ) -> ( x [,] y ) C_ ( 0 [,) 1 ) ) |
| 93 |
69 92
|
ordtrestixx |
|- ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) |
| 94 |
91 93
|
eqtri |
|- ( J |`t ( 0 [,) 1 ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) |
| 95 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 96 |
2 89
|
xrrest2 |
|- ( ( 0 [,) +oo ) C_ RR -> ( J |`t ( 0 [,) +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) ) |
| 97 |
95 96
|
ax-mp |
|- ( J |`t ( 0 [,) +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) |
| 98 |
|
iccssico2 |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x [,] y ) C_ ( 0 [,) +oo ) ) |
| 99 |
70 98
|
ordtrestixx |
|- ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) |
| 100 |
97 99
|
eqtri |
|- ( J |`t ( 0 [,) +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) |
| 101 |
94 100
|
oveq12i |
|- ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) ) |
| 102 |
88 101
|
eleqtrri |
|- F e. ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) |
| 103 |
64 102
|
pm3.2i |
|- ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ F e. ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) ) |