| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-ico | 
							 |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) | 
						
						
							| 2 | 
							
								1
							 | 
							elmpocl1 | 
							 |-  ( C e. ( A [,) B ) -> A e. RR* )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> A e. RR* )  | 
						
						
							| 4 | 
							
								1
							 | 
							elmpocl2 | 
							 |-  ( C e. ( A [,) B ) -> B e. RR* )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> B e. RR* )  | 
						
						
							| 6 | 
							
								1
							 | 
							elixx3g | 
							 |-  ( C e. ( A [,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ C /\ C < B ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simprbi | 
							 |-  ( C e. ( A [,) B ) -> ( A <_ C /\ C < B ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							simpld | 
							 |-  ( C e. ( A [,) B ) -> A <_ C )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> A <_ C )  | 
						
						
							| 10 | 
							
								1
							 | 
							elixx3g | 
							 |-  ( D e. ( A [,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ D e. RR* ) /\ ( A <_ D /\ D < B ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							simprbi | 
							 |-  ( D e. ( A [,) B ) -> ( A <_ D /\ D < B ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							simprd | 
							 |-  ( D e. ( A [,) B ) -> D < B )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantl | 
							 |-  ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> D < B )  | 
						
						
							| 14 | 
							
								
							 | 
							iccssico | 
							 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D < B ) ) -> ( C [,] D ) C_ ( A [,) B ) )  | 
						
						
							| 15 | 
							
								3 5 9 13 14
							 | 
							syl22anc | 
							 |-  ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> ( C [,] D ) C_ ( A [,) B ) )  |