Metamath Proof Explorer


Theorem iccssico2

Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccssico2 CABDABCDAB

Proof

Step Hyp Ref Expression
1 df-ico .=x*,y*z*|xzz<y
2 1 elmpocl1 CABA*
3 2 adantr CABDABA*
4 1 elmpocl2 CABB*
5 4 adantr CABDABB*
6 1 elixx3g CABA*B*C*ACC<B
7 6 simprbi CABACC<B
8 7 simpld CABAC
9 8 adantr CABDABAC
10 1 elixx3g DABA*B*D*ADD<B
11 10 simprbi DABADD<B
12 11 simprd DABD<B
13 12 adantl CABDABD<B
14 iccssico A*B*ACD<BCDAB
15 3 5 9 13 14 syl22anc CABDABCDAB