| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icopnfhmeo.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) | 
						
							| 2 |  | icopnfhmeo.j | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 3 | 1 | icopnfcnv | ⊢ ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  ∧  ◡ 𝐹  =  ( 𝑦  ∈  ( 0 [,) +∞ )  ↦  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) | 
						
							| 4 | 3 | simpli | ⊢ 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) | 
						
							| 5 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 6 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 7 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( 𝑥  ∈  ( 0 [,) 1 )  ↔  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥  ∧  𝑥  <  1 ) ) ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↔  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥  ∧  𝑥  <  1 ) ) | 
						
							| 9 | 8 | simp1bi | ⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  𝑥  ∈  ℝ ) | 
						
							| 10 | 9 | ssriv | ⊢ ( 0 [,) 1 )  ⊆  ℝ | 
						
							| 11 | 10 | sseli | ⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  𝑧  ∈  ℝ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  𝑧  ∈  ℝ ) | 
						
							| 13 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( 𝑤  ∈  ( 0 [,) 1 )  ↔  ( 𝑤  ∈  ℝ  ∧  0  ≤  𝑤  ∧  𝑤  <  1 ) ) ) | 
						
							| 14 | 5 6 13 | mp2an | ⊢ ( 𝑤  ∈  ( 0 [,) 1 )  ↔  ( 𝑤  ∈  ℝ  ∧  0  ≤  𝑤  ∧  𝑤  <  1 ) ) | 
						
							| 15 | 14 | simp3bi | ⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  𝑤  <  1 ) | 
						
							| 16 | 10 | sseli | ⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  𝑤  ∈  ℝ ) | 
						
							| 17 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 18 |  | difrp | ⊢ ( ( 𝑤  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑤  <  1  ↔  ( 1  −  𝑤 )  ∈  ℝ+ ) ) | 
						
							| 19 | 16 17 18 | sylancl | ⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  ( 𝑤  <  1  ↔  ( 1  −  𝑤 )  ∈  ℝ+ ) ) | 
						
							| 20 | 15 19 | mpbid | ⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  ( 1  −  𝑤 )  ∈  ℝ+ ) | 
						
							| 21 | 20 | rpregt0d | ⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  ( ( 1  −  𝑤 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑤 ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 1  −  𝑤 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑤 ) ) ) | 
						
							| 23 | 16 | adantl | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  𝑤  ∈  ℝ ) | 
						
							| 24 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( 𝑧  ∈  ( 0 [,) 1 )  ↔  ( 𝑧  ∈  ℝ  ∧  0  ≤  𝑧  ∧  𝑧  <  1 ) ) ) | 
						
							| 25 | 5 6 24 | mp2an | ⊢ ( 𝑧  ∈  ( 0 [,) 1 )  ↔  ( 𝑧  ∈  ℝ  ∧  0  ≤  𝑧  ∧  𝑧  <  1 ) ) | 
						
							| 26 | 25 | simp3bi | ⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  𝑧  <  1 ) | 
						
							| 27 |  | difrp | ⊢ ( ( 𝑧  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑧  <  1  ↔  ( 1  −  𝑧 )  ∈  ℝ+ ) ) | 
						
							| 28 | 11 17 27 | sylancl | ⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  ( 𝑧  <  1  ↔  ( 1  −  𝑧 )  ∈  ℝ+ ) ) | 
						
							| 29 | 26 28 | mpbid | ⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  ( 1  −  𝑧 )  ∈  ℝ+ ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 1  −  𝑧 )  ∈  ℝ+ ) | 
						
							| 31 | 30 | rpregt0d | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 1  −  𝑧 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑧 ) ) ) | 
						
							| 32 |  | lt2mul2div | ⊢ ( ( ( 𝑧  ∈  ℝ  ∧  ( ( 1  −  𝑤 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑤 ) ) )  ∧  ( 𝑤  ∈  ℝ  ∧  ( ( 1  −  𝑧 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑧 ) ) ) )  →  ( ( 𝑧  ·  ( 1  −  𝑤 ) )  <  ( 𝑤  ·  ( 1  −  𝑧 ) )  ↔  ( 𝑧  /  ( 1  −  𝑧 ) )  <  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) | 
						
							| 33 | 12 22 23 31 32 | syl22anc | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 𝑧  ·  ( 1  −  𝑤 ) )  <  ( 𝑤  ·  ( 1  −  𝑧 ) )  ↔  ( 𝑧  /  ( 1  −  𝑧 ) )  <  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) | 
						
							| 34 | 12 23 | remulcld | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  ·  𝑤 )  ∈  ℝ ) | 
						
							| 35 | 12 23 34 | ltsub1d | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  <  𝑤  ↔  ( 𝑧  −  ( 𝑧  ·  𝑤 ) )  <  ( 𝑤  −  ( 𝑧  ·  𝑤 ) ) ) ) | 
						
							| 36 | 12 | recnd | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  𝑧  ∈  ℂ ) | 
						
							| 37 |  | 1cnd | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  1  ∈  ℂ ) | 
						
							| 38 | 23 | recnd | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  𝑤  ∈  ℂ ) | 
						
							| 39 | 36 37 38 | subdid | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  ·  ( 1  −  𝑤 ) )  =  ( ( 𝑧  ·  1 )  −  ( 𝑧  ·  𝑤 ) ) ) | 
						
							| 40 | 36 | mulridd | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  ·  1 )  =  𝑧 ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 𝑧  ·  1 )  −  ( 𝑧  ·  𝑤 ) )  =  ( 𝑧  −  ( 𝑧  ·  𝑤 ) ) ) | 
						
							| 42 | 39 41 | eqtrd | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  ·  ( 1  −  𝑤 ) )  =  ( 𝑧  −  ( 𝑧  ·  𝑤 ) ) ) | 
						
							| 43 | 38 37 36 | subdid | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑤  ·  ( 1  −  𝑧 ) )  =  ( ( 𝑤  ·  1 )  −  ( 𝑤  ·  𝑧 ) ) ) | 
						
							| 44 | 38 | mulridd | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑤  ·  1 )  =  𝑤 ) | 
						
							| 45 | 38 36 | mulcomd | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑤  ·  𝑧 )  =  ( 𝑧  ·  𝑤 ) ) | 
						
							| 46 | 44 45 | oveq12d | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 𝑤  ·  1 )  −  ( 𝑤  ·  𝑧 ) )  =  ( 𝑤  −  ( 𝑧  ·  𝑤 ) ) ) | 
						
							| 47 | 43 46 | eqtrd | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑤  ·  ( 1  −  𝑧 ) )  =  ( 𝑤  −  ( 𝑧  ·  𝑤 ) ) ) | 
						
							| 48 | 42 47 | breq12d | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 𝑧  ·  ( 1  −  𝑤 ) )  <  ( 𝑤  ·  ( 1  −  𝑧 ) )  ↔  ( 𝑧  −  ( 𝑧  ·  𝑤 ) )  <  ( 𝑤  −  ( 𝑧  ·  𝑤 ) ) ) ) | 
						
							| 49 | 35 48 | bitr4d | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  <  𝑤  ↔  ( 𝑧  ·  ( 1  −  𝑤 ) )  <  ( 𝑤  ·  ( 1  −  𝑧 ) ) ) ) | 
						
							| 50 |  | id | ⊢ ( 𝑥  =  𝑧  →  𝑥  =  𝑧 ) | 
						
							| 51 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 1  −  𝑥 )  =  ( 1  −  𝑧 ) ) | 
						
							| 52 | 50 51 | oveq12d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  /  ( 1  −  𝑥 ) )  =  ( 𝑧  /  ( 1  −  𝑧 ) ) ) | 
						
							| 53 |  | ovex | ⊢ ( 𝑧  /  ( 1  −  𝑧 ) )  ∈  V | 
						
							| 54 | 52 1 53 | fvmpt | ⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧  /  ( 1  −  𝑧 ) ) ) | 
						
							| 55 |  | id | ⊢ ( 𝑥  =  𝑤  →  𝑥  =  𝑤 ) | 
						
							| 56 |  | oveq2 | ⊢ ( 𝑥  =  𝑤  →  ( 1  −  𝑥 )  =  ( 1  −  𝑤 ) ) | 
						
							| 57 | 55 56 | oveq12d | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  /  ( 1  −  𝑥 ) )  =  ( 𝑤  /  ( 1  −  𝑤 ) ) ) | 
						
							| 58 |  | ovex | ⊢ ( 𝑤  /  ( 1  −  𝑤 ) )  ∈  V | 
						
							| 59 | 57 1 58 | fvmpt | ⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝑤  /  ( 1  −  𝑤 ) ) ) | 
						
							| 60 | 54 59 | breqan12d | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 )  ↔  ( 𝑧  /  ( 1  −  𝑧 ) )  <  ( 𝑤  /  ( 1  −  𝑤 ) ) ) ) | 
						
							| 61 | 33 49 60 | 3bitr4d | ⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  <  𝑤  ↔  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 62 | 61 | rgen2 | ⊢ ∀ 𝑧  ∈  ( 0 [,) 1 ) ∀ 𝑤  ∈  ( 0 [,) 1 ) ( 𝑧  <  𝑤  ↔  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 63 |  | df-isom | ⊢ ( 𝐹  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ↔  ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  ∧  ∀ 𝑧  ∈  ( 0 [,) 1 ) ∀ 𝑤  ∈  ( 0 [,) 1 ) ( 𝑧  <  𝑤  ↔  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) ) ) | 
						
							| 64 | 4 62 63 | mpbir2an | ⊢ 𝐹  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) | 
						
							| 65 |  | letsr | ⊢  ≤   ∈   TosetRel | 
						
							| 66 | 65 | elexi | ⊢  ≤   ∈  V | 
						
							| 67 | 66 | inex1 | ⊢ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) )  ∈  V | 
						
							| 68 | 66 | inex1 | ⊢ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) )  ∈  V | 
						
							| 69 |  | icossxr | ⊢ ( 0 [,) 1 )  ⊆  ℝ* | 
						
							| 70 |  | icossxr | ⊢ ( 0 [,) +∞ )  ⊆  ℝ* | 
						
							| 71 |  | leiso | ⊢ ( ( ( 0 [,) 1 )  ⊆  ℝ*  ∧  ( 0 [,) +∞ )  ⊆  ℝ* )  →  ( 𝐹  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ↔  𝐹  Isom   ≤  ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) ) ) | 
						
							| 72 | 69 70 71 | mp2an | ⊢ ( 𝐹  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ↔  𝐹  Isom   ≤  ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) ) | 
						
							| 73 | 64 72 | mpbi | ⊢ 𝐹  Isom   ≤  ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) | 
						
							| 74 |  | isores1 | ⊢ ( 𝐹  Isom   ≤  ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ↔  𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) ) | 
						
							| 75 | 73 74 | mpbi | ⊢ 𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) | 
						
							| 76 |  | isores2 | ⊢ ( 𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ↔  𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) ) | 
						
							| 77 | 75 76 | mpbi | ⊢ 𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) | 
						
							| 78 |  | tsrps | ⊢ (  ≤   ∈   TosetRel   →   ≤   ∈  PosetRel ) | 
						
							| 79 | 65 78 | ax-mp | ⊢  ≤   ∈  PosetRel | 
						
							| 80 |  | ledm | ⊢ ℝ*  =  dom   ≤ | 
						
							| 81 | 80 | psssdm | ⊢ ( (  ≤   ∈  PosetRel  ∧  ( 0 [,) 1 )  ⊆  ℝ* )  →  dom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) )  =  ( 0 [,) 1 ) ) | 
						
							| 82 | 79 69 81 | mp2an | ⊢ dom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) )  =  ( 0 [,) 1 ) | 
						
							| 83 | 82 | eqcomi | ⊢ ( 0 [,) 1 )  =  dom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) | 
						
							| 84 | 80 | psssdm | ⊢ ( (  ≤   ∈  PosetRel  ∧  ( 0 [,) +∞ )  ⊆  ℝ* )  →  dom  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) )  =  ( 0 [,) +∞ ) ) | 
						
							| 85 | 79 70 84 | mp2an | ⊢ dom  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) )  =  ( 0 [,) +∞ ) | 
						
							| 86 | 85 | eqcomi | ⊢ ( 0 [,) +∞ )  =  dom  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) | 
						
							| 87 | 83 86 | ordthmeo | ⊢ ( ( (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) )  ∈  V  ∧  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) )  ∈  V  ∧  𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) )  →  𝐹  ∈  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ) ) ) | 
						
							| 88 | 67 68 77 87 | mp3an | ⊢ 𝐹  ∈  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ) ) | 
						
							| 89 |  | eqid | ⊢ ( ordTop ‘  ≤  )  =  ( ordTop ‘  ≤  ) | 
						
							| 90 | 2 89 | xrrest2 | ⊢ ( ( 0 [,) 1 )  ⊆  ℝ  →  ( 𝐽  ↾t  ( 0 [,) 1 ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) 1 ) ) ) | 
						
							| 91 | 10 90 | ax-mp | ⊢ ( 𝐽  ↾t  ( 0 [,) 1 ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) 1 ) ) | 
						
							| 92 |  | iccssico2 | ⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) 1 ) )  →  ( 𝑥 [,] 𝑦 )  ⊆  ( 0 [,) 1 ) ) | 
						
							| 93 | 69 92 | ordtrestixx | ⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) 1 ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ) | 
						
							| 94 | 91 93 | eqtri | ⊢ ( 𝐽  ↾t  ( 0 [,) 1 ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ) | 
						
							| 95 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 96 | 2 89 | xrrest2 | ⊢ ( ( 0 [,) +∞ )  ⊆  ℝ  →  ( 𝐽  ↾t  ( 0 [,) +∞ ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) +∞ ) ) ) | 
						
							| 97 | 95 96 | ax-mp | ⊢ ( 𝐽  ↾t  ( 0 [,) +∞ ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) +∞ ) ) | 
						
							| 98 |  | iccssico2 | ⊢ ( ( 𝑥  ∈  ( 0 [,) +∞ )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥 [,] 𝑦 )  ⊆  ( 0 [,) +∞ ) ) | 
						
							| 99 | 70 98 | ordtrestixx | ⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) +∞ ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ) | 
						
							| 100 | 97 99 | eqtri | ⊢ ( 𝐽  ↾t  ( 0 [,) +∞ ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ) | 
						
							| 101 | 94 100 | oveq12i | ⊢ ( ( 𝐽  ↾t  ( 0 [,) 1 ) ) Homeo ( 𝐽  ↾t  ( 0 [,) +∞ ) ) )  =  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ) ) | 
						
							| 102 | 88 101 | eleqtrri | ⊢ 𝐹  ∈  ( ( 𝐽  ↾t  ( 0 [,) 1 ) ) Homeo ( 𝐽  ↾t  ( 0 [,) +∞ ) ) ) | 
						
							| 103 | 64 102 | pm3.2i | ⊢ ( 𝐹  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ∧  𝐹  ∈  ( ( 𝐽  ↾t  ( 0 [,) 1 ) ) Homeo ( 𝐽  ↾t  ( 0 [,) +∞ ) ) ) ) |