Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
2 |
|
eqid |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
3 |
1 2
|
iccpnfhmeo |
|- ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) e. ( II Homeo ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) ) |
4 |
3
|
simpri |
|- ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) e. ( II Homeo ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) |
5 |
|
hmphi |
|- ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) e. ( II Homeo ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) -> II ~= ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) |
6 |
4 5
|
ax-mp |
|- II ~= ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |