Description: The extended real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrsup | ⊢ sup ( ℝ* , ℝ* , < ) = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ℝ* ⊆ ℝ* | |
| 2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 3 | supxrpnf | ⊢ ( ( ℝ* ⊆ ℝ* ∧ +∞ ∈ ℝ* ) → sup ( ℝ* , ℝ* , < ) = +∞ ) | |
| 4 | 1 2 3 | mp2an | ⊢ sup ( ℝ* , ℝ* , < ) = +∞ |