| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 2 | 1 | leidd | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ≤  𝑀 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 ) )  →  𝑀  ≤  𝑀 ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑘  =  𝑀  →  ( 𝑘  ≤  𝑀  ↔  𝑀  ≤  𝑀 ) ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑘  =  𝑀  →  ( 𝑘  ≤  𝑁  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 6 | 4 5 | bibi12d | ⊢ ( 𝑘  =  𝑀  →  ( ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 )  ↔  ( 𝑀  ≤  𝑀  ↔  𝑀  ≤  𝑁 ) ) ) | 
						
							| 7 | 6 | rspcva | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 ) )  →  ( 𝑀  ≤  𝑀  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 8 | 3 7 | mpbid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 ) )  →  𝑀  ≤  𝑁 ) | 
						
							| 9 | 8 | adantlr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 ) )  →  𝑀  ≤  𝑁 ) | 
						
							| 10 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 11 | 10 | leidd | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ≤  𝑁 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 ) )  →  𝑁  ≤  𝑁 ) | 
						
							| 13 |  | breq1 | ⊢ ( 𝑘  =  𝑁  →  ( 𝑘  ≤  𝑀  ↔  𝑁  ≤  𝑀 ) ) | 
						
							| 14 |  | breq1 | ⊢ ( 𝑘  =  𝑁  →  ( 𝑘  ≤  𝑁  ↔  𝑁  ≤  𝑁 ) ) | 
						
							| 15 | 13 14 | bibi12d | ⊢ ( 𝑘  =  𝑁  →  ( ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 )  ↔  ( 𝑁  ≤  𝑀  ↔  𝑁  ≤  𝑁 ) ) ) | 
						
							| 16 | 15 | rspcva | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 ) )  →  ( 𝑁  ≤  𝑀  ↔  𝑁  ≤  𝑁 ) ) | 
						
							| 17 | 12 16 | mpbird | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 ) )  →  𝑁  ≤  𝑀 ) | 
						
							| 18 | 17 | adantll | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 ) )  →  𝑁  ≤  𝑀 ) | 
						
							| 19 | 9 18 | jca | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 ) )  →  ( 𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑀 ) ) | 
						
							| 20 | 19 | ex | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 )  →  ( 𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑀 ) ) ) | 
						
							| 21 |  | letri3 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑀  =  𝑁  ↔  ( 𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑀 ) ) ) | 
						
							| 22 | 1 10 21 | syl2an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  =  𝑁  ↔  ( 𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑀 ) ) ) | 
						
							| 23 | 20 22 | sylibrd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 )  →  𝑀  =  𝑁 ) ) | 
						
							| 24 | 23 | 3impia | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ∀ 𝑘  ∈  ℤ ( 𝑘  ≤  𝑀  ↔  𝑘  ≤  𝑁 ) )  →  𝑀  =  𝑁 ) |