| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 2 |
1
|
leidd |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ≤ 𝑀 ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑀 ≤ 𝑀 ) |
| 4 |
|
breq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝑘 ≤ 𝑀 ↔ 𝑀 ≤ 𝑀 ) ) |
| 5 |
|
breq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝑘 ≤ 𝑁 ↔ 𝑀 ≤ 𝑁 ) ) |
| 6 |
4 5
|
bibi12d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ↔ ( 𝑀 ≤ 𝑀 ↔ 𝑀 ≤ 𝑁 ) ) ) |
| 7 |
6
|
rspcva |
⊢ ( ( 𝑀 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → ( 𝑀 ≤ 𝑀 ↔ 𝑀 ≤ 𝑁 ) ) |
| 8 |
3 7
|
mpbid |
⊢ ( ( 𝑀 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑀 ≤ 𝑁 ) |
| 9 |
8
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑀 ≤ 𝑁 ) |
| 10 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 11 |
10
|
leidd |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ≤ 𝑁 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑁 ≤ 𝑁 ) |
| 13 |
|
breq1 |
⊢ ( 𝑘 = 𝑁 → ( 𝑘 ≤ 𝑀 ↔ 𝑁 ≤ 𝑀 ) ) |
| 14 |
|
breq1 |
⊢ ( 𝑘 = 𝑁 → ( 𝑘 ≤ 𝑁 ↔ 𝑁 ≤ 𝑁 ) ) |
| 15 |
13 14
|
bibi12d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ↔ ( 𝑁 ≤ 𝑀 ↔ 𝑁 ≤ 𝑁 ) ) ) |
| 16 |
15
|
rspcva |
⊢ ( ( 𝑁 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → ( 𝑁 ≤ 𝑀 ↔ 𝑁 ≤ 𝑁 ) ) |
| 17 |
12 16
|
mpbird |
⊢ ( ( 𝑁 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑁 ≤ 𝑀 ) |
| 18 |
17
|
adantll |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑁 ≤ 𝑀 ) |
| 19 |
9 18
|
jca |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) |
| 20 |
19
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 21 |
|
letri3 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 22 |
1 10 21
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 23 |
20 22
|
sylibrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) → 𝑀 = 𝑁 ) ) |
| 24 |
23
|
3impia |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑀 = 𝑁 ) |