| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zfrep4.1 | ⊢ { 𝑥  ∣  𝜑 }  ∈  V | 
						
							| 2 |  | zfrep4.2 | ⊢ ( 𝜑  →  ∃ 𝑧 ∀ 𝑦 ( 𝜓  →  𝑦  =  𝑧 ) ) | 
						
							| 3 |  | abid | ⊢ ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ↔  𝜑 ) | 
						
							| 4 | 3 | anbi1i | ⊢ ( ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ∧  𝜓 )  ↔  ( 𝜑  ∧  𝜓 ) ) | 
						
							| 5 | 4 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ∧  𝜓 )  ↔  ∃ 𝑥 ( 𝜑  ∧  𝜓 ) ) | 
						
							| 6 | 5 | abbii | ⊢ { 𝑦  ∣  ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ∧  𝜓 ) }  =  { 𝑦  ∣  ∃ 𝑥 ( 𝜑  ∧  𝜓 ) } | 
						
							| 7 |  | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∣  𝜑 } | 
						
							| 8 | 3 2 | sylbi | ⊢ ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  →  ∃ 𝑧 ∀ 𝑦 ( 𝜓  →  𝑦  =  𝑧 ) ) | 
						
							| 9 | 7 1 8 | zfrepclf | ⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ∧  𝜓 ) ) | 
						
							| 10 |  | eqabb | ⊢ ( 𝑧  =  { 𝑦  ∣  ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ∧  𝜓 ) }  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ∧  𝜓 ) ) ) | 
						
							| 11 | 10 | exbii | ⊢ ( ∃ 𝑧 𝑧  =  { 𝑦  ∣  ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ∧  𝜓 ) }  ↔  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ∧  𝜓 ) ) ) | 
						
							| 12 | 9 11 | mpbir | ⊢ ∃ 𝑧 𝑧  =  { 𝑦  ∣  ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ∧  𝜓 ) } | 
						
							| 13 | 12 | issetri | ⊢ { 𝑦  ∣  ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ∧  𝜓 ) }  ∈  V | 
						
							| 14 | 6 13 | eqeltrri | ⊢ { 𝑦  ∣  ∃ 𝑥 ( 𝜑  ∧  𝜓 ) }  ∈  V |