| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn | ⊢ ( 𝑍  ∈  ℤ  ↔  ( 𝑍  ∈  ℝ  ∧  ( 𝑍  ∈  ℕ  ∨  - 𝑍  ∈  ℕ0 ) ) ) | 
						
							| 2 |  | nnge1 | ⊢ ( 𝑍  ∈  ℕ  →  1  ≤  𝑍 ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑍  ∈  ℝ  →  ( 𝑍  ∈  ℕ  →  1  ≤  𝑍 ) ) | 
						
							| 4 |  | elnn0z | ⊢ ( - 𝑍  ∈  ℕ0  ↔  ( - 𝑍  ∈  ℤ  ∧  0  ≤  - 𝑍 ) ) | 
						
							| 5 |  | le0neg1 | ⊢ ( 𝑍  ∈  ℝ  →  ( 𝑍  ≤  0  ↔  0  ≤  - 𝑍 ) ) | 
						
							| 6 | 5 | biimprd | ⊢ ( 𝑍  ∈  ℝ  →  ( 0  ≤  - 𝑍  →  𝑍  ≤  0 ) ) | 
						
							| 7 | 6 | adantld | ⊢ ( 𝑍  ∈  ℝ  →  ( ( - 𝑍  ∈  ℤ  ∧  0  ≤  - 𝑍 )  →  𝑍  ≤  0 ) ) | 
						
							| 8 | 4 7 | biimtrid | ⊢ ( 𝑍  ∈  ℝ  →  ( - 𝑍  ∈  ℕ0  →  𝑍  ≤  0 ) ) | 
						
							| 9 | 3 8 | orim12d | ⊢ ( 𝑍  ∈  ℝ  →  ( ( 𝑍  ∈  ℕ  ∨  - 𝑍  ∈  ℕ0 )  →  ( 1  ≤  𝑍  ∨  𝑍  ≤  0 ) ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( 𝑍  ∈  ℝ  ∧  ( 𝑍  ∈  ℕ  ∨  - 𝑍  ∈  ℕ0 ) )  →  ( 1  ≤  𝑍  ∨  𝑍  ≤  0 ) ) | 
						
							| 11 | 10 | orcomd | ⊢ ( ( 𝑍  ∈  ℝ  ∧  ( 𝑍  ∈  ℕ  ∨  - 𝑍  ∈  ℕ0 ) )  →  ( 𝑍  ≤  0  ∨  1  ≤  𝑍 ) ) | 
						
							| 12 | 1 11 | sylbi | ⊢ ( 𝑍  ∈  ℤ  →  ( 𝑍  ≤  0  ∨  1  ≤  𝑍 ) ) |