Metamath Proof Explorer


Theorem zltp1ne

Description: Integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023)

Ref Expression
Assertion zltp1ne ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 1 ) < 𝐵 ↔ ( 𝐴 < 𝐵𝐵 ≠ ( 𝐴 + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 zre ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ )
2 zre ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ )
3 peano2re ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ )
4 ltlen ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 1 ) < 𝐵 ↔ ( ( 𝐴 + 1 ) ≤ 𝐵𝐵 ≠ ( 𝐴 + 1 ) ) ) )
5 3 4 sylan ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 1 ) < 𝐵 ↔ ( ( 𝐴 + 1 ) ≤ 𝐵𝐵 ≠ ( 𝐴 + 1 ) ) ) )
6 1 2 5 syl2an ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 1 ) < 𝐵 ↔ ( ( 𝐴 + 1 ) ≤ 𝐵𝐵 ≠ ( 𝐴 + 1 ) ) ) )
7 zltp1le ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 1 ) ≤ 𝐵 ) )
8 7 anbi1d ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 < 𝐵𝐵 ≠ ( 𝐴 + 1 ) ) ↔ ( ( 𝐴 + 1 ) ≤ 𝐵𝐵 ≠ ( 𝐴 + 1 ) ) ) )
9 6 8 bitr4d ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 1 ) < 𝐵 ↔ ( 𝐴 < 𝐵𝐵 ≠ ( 𝐴 + 1 ) ) ) )