Description: A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znegclb | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | znegcl | ⊢ ( 𝐴 ∈ ℤ → - 𝐴 ∈ ℤ ) | |
| 2 | znegcl | ⊢ ( - 𝐴 ∈ ℤ → - - 𝐴 ∈ ℤ ) | |
| 3 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝐴 ∈ ℂ → ( - - 𝐴 ∈ ℤ ↔ 𝐴 ∈ ℤ ) ) | 
| 5 | 2 4 | imbitrid | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℤ → 𝐴 ∈ ℤ ) ) | 
| 6 | 1 5 | impbid2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℤ ↔ - 𝐴 ∈ ℤ ) ) |