| Step | Hyp | Ref | Expression | 
						
							| 1 |  | znle2.y | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 2 |  | znle2.f | ⊢ 𝐹  =  ( ( ℤRHom ‘ 𝑌 )  ↾  𝑊 ) | 
						
							| 3 |  | znle2.w | ⊢ 𝑊  =  if ( 𝑁  =  0 ,  ℤ ,  ( 0 ..^ 𝑁 ) ) | 
						
							| 4 |  | znle2.l | ⊢  ≤   =  ( le ‘ 𝑌 ) | 
						
							| 5 |  | znleval.x | ⊢ 𝑋  =  ( Base ‘ 𝑌 ) | 
						
							| 6 | 1 2 3 4 5 | znleval | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 8 |  | 3simpc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) ) | 
						
							| 9 | 8 | biantrurd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 )  ↔  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 10 |  | df-3an | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) )  ↔  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 11 | 9 10 | bitr4di | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 )  ↔  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 12 | 7 11 | bitr4d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  ≤  𝐵  ↔  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) |