| Step | Hyp | Ref | Expression | 
						
							| 1 |  | znle2.y | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 2 |  | znle2.f | ⊢ 𝐹  =  ( ( ℤRHom ‘ 𝑌 )  ↾  𝑊 ) | 
						
							| 3 |  | znle2.w | ⊢ 𝑊  =  if ( 𝑁  =  0 ,  ℤ ,  ( 0 ..^ 𝑁 ) ) | 
						
							| 4 |  | znle2.l | ⊢  ≤   =  ( le ‘ 𝑌 ) | 
						
							| 5 |  | znleval.x | ⊢ 𝑋  =  ( Base ‘ 𝑌 ) | 
						
							| 6 | 1 2 3 4 | znle2 | ⊢ ( 𝑁  ∈  ℕ0  →   ≤   =  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) ) | 
						
							| 7 |  | relco | ⊢ Rel  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) | 
						
							| 8 |  | relssdmrn | ⊢ ( Rel  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  →  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ⊆  ( dom  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ×  ran  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ⊆  ( dom  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ×  ran  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) ) | 
						
							| 10 |  | dmcoss | ⊢ dom  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ⊆  dom  ◡ 𝐹 | 
						
							| 11 |  | df-rn | ⊢ ran  𝐹  =  dom  ◡ 𝐹 | 
						
							| 12 | 1 5 2 3 | znf1o | ⊢ ( 𝑁  ∈  ℕ0  →  𝐹 : 𝑊 –1-1-onto→ 𝑋 ) | 
						
							| 13 |  | f1ofo | ⊢ ( 𝐹 : 𝑊 –1-1-onto→ 𝑋  →  𝐹 : 𝑊 –onto→ 𝑋 ) | 
						
							| 14 |  | forn | ⊢ ( 𝐹 : 𝑊 –onto→ 𝑋  →  ran  𝐹  =  𝑋 ) | 
						
							| 15 | 12 13 14 | 3syl | ⊢ ( 𝑁  ∈  ℕ0  →  ran  𝐹  =  𝑋 ) | 
						
							| 16 | 11 15 | eqtr3id | ⊢ ( 𝑁  ∈  ℕ0  →  dom  ◡ 𝐹  =  𝑋 ) | 
						
							| 17 | 10 16 | sseqtrid | ⊢ ( 𝑁  ∈  ℕ0  →  dom  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ⊆  𝑋 ) | 
						
							| 18 |  | rncoss | ⊢ ran  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ⊆  ran  ( 𝐹  ∘   ≤  ) | 
						
							| 19 |  | rncoss | ⊢ ran  ( 𝐹  ∘   ≤  )  ⊆  ran  𝐹 | 
						
							| 20 | 19 15 | sseqtrid | ⊢ ( 𝑁  ∈  ℕ0  →  ran  ( 𝐹  ∘   ≤  )  ⊆  𝑋 ) | 
						
							| 21 | 18 20 | sstrid | ⊢ ( 𝑁  ∈  ℕ0  →  ran  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ⊆  𝑋 ) | 
						
							| 22 |  | xpss12 | ⊢ ( ( dom  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ⊆  𝑋  ∧  ran  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ⊆  𝑋 )  →  ( dom  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ×  ran  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 23 | 17 21 22 | syl2anc | ⊢ ( 𝑁  ∈  ℕ0  →  ( dom  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ×  ran  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 24 | 9 23 | sstrid | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 25 | 6 24 | eqsstrd | ⊢ ( 𝑁  ∈  ℕ0  →   ≤   ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 26 | 25 | ssbrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐴  ≤  𝐵  →  𝐴 ( 𝑋  ×  𝑋 ) 𝐵 ) ) | 
						
							| 27 |  | brxp | ⊢ ( 𝐴 ( 𝑋  ×  𝑋 ) 𝐵  ↔  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) ) | 
						
							| 28 | 26 27 | imbitrdi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐴  ≤  𝐵  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) ) ) | 
						
							| 29 | 28 | pm4.71rd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐴  ≤  𝐵  ↔  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≤  𝐵 ) ) ) | 
						
							| 30 | 6 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →   ≤   =  ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) ) | 
						
							| 31 | 30 | breqd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴  ≤  𝐵  ↔  𝐴 ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) 𝐵 ) ) | 
						
							| 32 |  | brcog | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) 𝐵  ↔  ∃ 𝑥 ( 𝐴 ◡ 𝐹 𝑥  ∧  𝑥 ( 𝐹  ∘   ≤  ) 𝐵 ) ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) 𝐵  ↔  ∃ 𝑥 ( 𝐴 ◡ 𝐹 𝑥  ∧  𝑥 ( 𝐹  ∘   ≤  ) 𝐵 ) ) ) | 
						
							| 34 |  | eqcom | ⊢ ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐴 )  ↔  ( ◡ 𝐹 ‘ 𝐴 )  =  𝑥 ) | 
						
							| 35 | 12 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  𝐹 : 𝑊 –1-1-onto→ 𝑋 ) | 
						
							| 36 |  | f1ocnv | ⊢ ( 𝐹 : 𝑊 –1-1-onto→ 𝑋  →  ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 ) | 
						
							| 37 |  | f1ofn | ⊢ ( ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊  →  ◡ 𝐹  Fn  𝑋 ) | 
						
							| 38 | 35 36 37 | 3syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ◡ 𝐹  Fn  𝑋 ) | 
						
							| 39 |  | simprl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 40 |  | fnbrfvb | ⊢ ( ( ◡ 𝐹  Fn  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( ◡ 𝐹 ‘ 𝐴 )  =  𝑥  ↔  𝐴 ◡ 𝐹 𝑥 ) ) | 
						
							| 41 | 38 39 40 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( ◡ 𝐹 ‘ 𝐴 )  =  𝑥  ↔  𝐴 ◡ 𝐹 𝑥 ) ) | 
						
							| 42 | 34 41 | bitr2id | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 ◡ 𝐹 𝑥  ↔  𝑥  =  ( ◡ 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 43 | 42 | anbi1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 ◡ 𝐹 𝑥  ∧  𝑥 ( 𝐹  ∘   ≤  ) 𝐵 )  ↔  ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐴 )  ∧  𝑥 ( 𝐹  ∘   ≤  ) 𝐵 ) ) ) | 
						
							| 44 | 43 | exbidv | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ∃ 𝑥 ( 𝐴 ◡ 𝐹 𝑥  ∧  𝑥 ( 𝐹  ∘   ≤  ) 𝐵 )  ↔  ∃ 𝑥 ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐴 )  ∧  𝑥 ( 𝐹  ∘   ≤  ) 𝐵 ) ) ) | 
						
							| 45 | 33 44 | bitrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 ( ( 𝐹  ∘   ≤  )  ∘  ◡ 𝐹 ) 𝐵  ↔  ∃ 𝑥 ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐴 )  ∧  𝑥 ( 𝐹  ∘   ≤  ) 𝐵 ) ) ) | 
						
							| 46 |  | fvex | ⊢ ( ◡ 𝐹 ‘ 𝐴 )  ∈  V | 
						
							| 47 |  | breq1 | ⊢ ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐴 )  →  ( 𝑥 ( 𝐹  ∘   ≤  ) 𝐵  ↔  ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹  ∘   ≤  ) 𝐵 ) ) | 
						
							| 48 | 46 47 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐴 )  ∧  𝑥 ( 𝐹  ∘   ≤  ) 𝐵 )  ↔  ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹  ∘   ≤  ) 𝐵 ) | 
						
							| 49 |  | simprr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 50 |  | brcog | ⊢ ( ( ( ◡ 𝐹 ‘ 𝐴 )  ∈  V  ∧  𝐵  ∈  𝑋 )  →  ( ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹  ∘   ≤  ) 𝐵  ↔  ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥  ∧  𝑥 𝐹 𝐵 ) ) ) | 
						
							| 51 | 46 49 50 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹  ∘   ≤  ) 𝐵  ↔  ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥  ∧  𝑥 𝐹 𝐵 ) ) ) | 
						
							| 52 |  | fvex | ⊢ ( ◡ 𝐹 ‘ 𝐵 )  ∈  V | 
						
							| 53 |  | breq2 | ⊢ ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐵 )  →  ( ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥  ↔  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 54 | 52 53 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐵 )  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥 )  ↔  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) | 
						
							| 55 |  | eqcom | ⊢ ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐵 )  ↔  ( ◡ 𝐹 ‘ 𝐵 )  =  𝑥 ) | 
						
							| 56 |  | fnbrfvb | ⊢ ( ( ◡ 𝐹  Fn  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( ◡ 𝐹 ‘ 𝐵 )  =  𝑥  ↔  𝐵 ◡ 𝐹 𝑥 ) ) | 
						
							| 57 | 38 49 56 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( ◡ 𝐹 ‘ 𝐵 )  =  𝑥  ↔  𝐵 ◡ 𝐹 𝑥 ) ) | 
						
							| 58 | 55 57 | bitrid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐵 )  ↔  𝐵 ◡ 𝐹 𝑥 ) ) | 
						
							| 59 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 60 |  | brcnvg | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  V )  →  ( 𝐵 ◡ 𝐹 𝑥  ↔  𝑥 𝐹 𝐵 ) ) | 
						
							| 61 | 49 59 60 | sylancl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐵 ◡ 𝐹 𝑥  ↔  𝑥 𝐹 𝐵 ) ) | 
						
							| 62 | 58 61 | bitrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐵 )  ↔  𝑥 𝐹 𝐵 ) ) | 
						
							| 63 | 62 | anbi1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐵 )  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥 )  ↔  ( 𝑥 𝐹 𝐵  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥 ) ) ) | 
						
							| 64 | 63 | biancomd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐵 )  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥 )  ↔  ( ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥  ∧  𝑥 𝐹 𝐵 ) ) ) | 
						
							| 65 | 64 | exbidv | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ∃ 𝑥 ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐵 )  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥 )  ↔  ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥  ∧  𝑥 𝐹 𝐵 ) ) ) | 
						
							| 66 | 54 65 | bitr3id | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 )  ↔  ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 )  ≤  𝑥  ∧  𝑥 𝐹 𝐵 ) ) ) | 
						
							| 67 | 51 66 | bitr4d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹  ∘   ≤  ) 𝐵  ↔  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 68 | 48 67 | bitrid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ∃ 𝑥 ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐴 )  ∧  𝑥 ( 𝐹  ∘   ≤  ) 𝐵 )  ↔  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 69 | 31 45 68 | 3bitrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴  ≤  𝐵  ↔  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 70 | 69 | pm5.32da | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≤  𝐵 )  ↔  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 71 |  | df-3an | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) )  ↔  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 72 | 70 71 | bitr4di | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≤  𝐵 )  ↔  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 73 | 29 72 | bitrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ◡ 𝐹 ‘ 𝐴 )  ≤  ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |