Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf1 Unicode version

Theorem inf1 8060
 Description: Variation of Axiom of Infinity (using zfinf 8077 as a hypothesis). Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 14-Oct-1996.) (Revised by David Abernethy, 1-Oct-2013.)
Hypothesis
Ref Expression
inf1.1
Assertion
Ref Expression
inf1

Proof of Theorem inf1
StepHypRef Expression
1 inf1.1 . 2
2 ne0i 3790 . . 3
32anim1i 568 . 2
41, 3eximii 1658 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  A.wal 1393  E.wex 1612  =/=wne 2652   c0 3784 This theorem is referenced by:  inf2  8061 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3478  df-nul 3785
 Copyright terms: Public domain W3C validator